Alemany, M.M.E.et al., 2010. Mathematical programming model for centralized master planning in ceramic tile supply chains.International Journal of Production Research, 48 (17), 5053–5074
Beamon, B. M. (1998). Supply chain design and analysis: International Journal of Production Economics, 55(3), 281-294. doi:10.1016/s0925-5273(98)00079-6
Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6-7), 1131-1144. doi:10.1016/j.compchemeng.2003.09.014
[+]
Alemany, M.M.E.et al., 2010. Mathematical programming model for centralized master planning in ceramic tile supply chains.International Journal of Production Research, 48 (17), 5053–5074
Beamon, B. M. (1998). Supply chain design and analysis: International Journal of Production Economics, 55(3), 281-294. doi:10.1016/s0925-5273(98)00079-6
Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6-7), 1131-1144. doi:10.1016/j.compchemeng.2003.09.014
Chern, C.-C., & Hsieh, J.-S. (2007). A heuristic algorithm for master planning that satisfies multiple objectives. Computers & Operations Research, 34(11), 3491-3513. doi:10.1016/j.cor.2006.02.022
Kreipl, S., & Pinedo, M. (2009). Planning and Scheduling in Supply Chains: An Overview of Issues in Practice. Production and Operations Management, 13(1), 77-92. doi:10.1111/j.1937-5956.2004.tb00146.x
Lai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-i
Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003
Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008
Mula, J., Peidro, D., and Poler, R., 2010b. The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand.International Journal of Production Economics, In press
Park *, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205-1224. doi:10.1080/00207540412331327718
Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-y
Peidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021
Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396-419. doi:10.1016/j.tre.2006.11.001
Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010
Haehling von Lanzenauer, C., & Pilz-Glombik, K. (2002). Coordinating supply chain decisions: an optimization model. OR Spectrum, 24(1), 59-78. doi:10.1007/s291-002-8200-3
Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-3
[-]