- -

The p-Daugavet property for function spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The p-Daugavet property for function spaces

Show full item record

Sánchez Pérez, EA.; Werner, D. (2011). The p-Daugavet property for function spaces. Archiv der Mathematik. 96(6):565-575. doi:10.1007/s00013-011-0257-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/48887

Files in this item

Item Metadata

Title: The p-Daugavet property for function spaces
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
A natural extension of the Daugavet property for p-convex Banach function spaces and related classes is analysed. As an application, we extend the arguments given in the setting of the Daugavet property to show that no ...[+]
Subjects: Daugavet property , Lp-space
Copyrigths: Reserva de todos los derechos
Source:
Archiv der Mathematik. (issn: 0003-889X )
DOI: 10.1007/s00013-011-0257-y
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s00013-011-0257-y
Thanks:
E. A. Sanchez Perez was partially supported by a grant from the Generalitat Valenciana (BEST/2009/108) and a grant from the Universidad Politecnica de Valencia (PAID-00-09/2291). Support of the Ministerio de Ciencia e ...[+]
Type: Artículo

References

Abramovich Yu.A., Aliprantis C.D., Burkinshaw O.: The Daugavet equation in uniformly convex Banach spaces. J. Funct. Anal. 97, 215–230 (1991)

Yu. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, Amer. Math. Soc., Providence RI, 2002.

Bilik D. et al.: Narrow operators and the Daugavet property for ultraproducts. Positivity 9, 45–62 (2005) [+]
Abramovich Yu.A., Aliprantis C.D., Burkinshaw O.: The Daugavet equation in uniformly convex Banach spaces. J. Funct. Anal. 97, 215–230 (1991)

Yu. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, Amer. Math. Soc., Providence RI, 2002.

Bilik D. et al.: Narrow operators and the Daugavet property for ultraproducts. Positivity 9, 45–62 (2005)

Boyko K., Kadets V.M.: Daugavet equation in L 1 as a limiting case of the Benyamini-Lin L p theorem. Kharkov National University Vestnik 645, 22–29 (2004)

Becerra Guerrero J., Rodríguez-Palacios A.: Banach spaces with the Daugavet property, and the centralizer. J. Funct. Anal. 254, 2294–2302 (2008)

Kadets V.M.: Some remarks concerning the Daugavet equation. Quaestiones Math. 19, 225–235 (1996)

Kadets V.M. et al.: Banach spaces with the Daugavet property. Trans. Amer. Math. Soc. 352, 855–873 (2000)

J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

Martń M.: The Daugavetian index of a Banach space. Taiwan. J. Math. 7, 631–640 (2003)

Martín M., Oikhberg T.: An alternative Daugavet property. J. Math Anal. Appl. 294, 158–180 (2004)

Oikhberg T.: Spaces of operators, the ψ-Daugavet property, and numerical indices. Positivity 9, 607–623 (2005)

S., Okada, W. J. Ricker, E.A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators acting in Function Spaces., Oper. Theory Adv. Appl. 180, Birkhäuser, Basel, 2008.

Sánchez Pérez E.A., Werner D.: The geometry of L p -spaces over atomless measure spaces and the Daugavet property. Banach J. Math. Anal. 5, 167–180 (2011)

H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

Werner D.: Recent progress on the Daugavet property, Irish Math. Soc. Bulletin 46, 77–97 (2001)

[-]

This item appears in the following Collection(s)

Show full item record