- -

The p-Daugavet property for function spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The p-Daugavet property for function spaces

Show simple item record

Files in this item

dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.contributor.author Werner, Dirk es_ES
dc.date.accessioned 2015-04-16T08:52:59Z
dc.date.available 2015-04-16T08:52:59Z
dc.date.issued 2011-06
dc.identifier.issn 0003-889X
dc.identifier.uri http://hdl.handle.net/10251/48887
dc.description.abstract A natural extension of the Daugavet property for p-convex Banach function spaces and related classes is analysed. As an application, we extend the arguments given in the setting of the Daugavet property to show that no reflexive space falls into this class. © 2011 Springer Basel AG. es_ES
dc.description.sponsorship E. A. Sanchez Perez was partially supported by a grant from the Generalitat Valenciana (BEST/2009/108) and a grant from the Universidad Politecnica de Valencia (PAID-00-09/2291). Support of the Ministerio de Ciencia e Innovacion, under project #MTM2009-14483-C02-02 (Spain) and FEDER is also gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation info:eu-repo/grantAgreement/Generalitat Valenciana//BEST%2F2009%2F108/ES/BEST%2F2009%2F108/
dc.relation UPV/PAID-00-09/2291
dc.relation info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach./
dc.relation.ispartof Archiv der Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Daugavet property es_ES
dc.subject Lp-space es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The p-Daugavet property for function spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00013-011-0257-y
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Sánchez Pérez, EA.; Werner, D. (2011). The p-Daugavet property for function spaces. Archiv der Mathematik. 96(6):565-575. https://doi.org/10.1007/s00013-011-0257-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00013-011-0257-y es_ES
dc.description.upvformatpinicio 565 es_ES
dc.description.upvformatpfin 575 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 96 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 212746
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Regional Development Fund
dc.relation.references Abramovich Yu.A., Aliprantis C.D., Burkinshaw O.: The Daugavet equation in uniformly convex Banach spaces. J. Funct. Anal. 97, 215–230 (1991) es_ES
dc.relation.references Yu. A. Abramovich and C. D. Aliprantis, An Invitation to Operator Theory, Graduate Studies in Mathematics 50, Amer. Math. Soc., Providence RI, 2002. es_ES
dc.relation.references Bilik D. et al.: Narrow operators and the Daugavet property for ultraproducts. Positivity 9, 45–62 (2005) es_ES
dc.relation.references Boyko K., Kadets V.M.: Daugavet equation in L 1 as a limiting case of the Benyamini-Lin L p theorem. Kharkov National University Vestnik 645, 22–29 (2004) es_ES
dc.relation.references Becerra Guerrero J., Rodríguez-Palacios A.: Banach spaces with the Daugavet property, and the centralizer. J. Funct. Anal. 254, 2294–2302 (2008) es_ES
dc.relation.references Kadets V.M.: Some remarks concerning the Daugavet equation. Quaestiones Math. 19, 225–235 (1996) es_ES
dc.relation.references Kadets V.M. et al.: Banach spaces with the Daugavet property. Trans. Amer. Math. Soc. 352, 855–873 (2000) es_ES
dc.relation.references J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979. es_ES
dc.relation.references Martń M.: The Daugavetian index of a Banach space. Taiwan. J. Math. 7, 631–640 (2003) es_ES
dc.relation.references Martín M., Oikhberg T.: An alternative Daugavet property. J. Math Anal. Appl. 294, 158–180 (2004) es_ES
dc.relation.references Oikhberg T.: Spaces of operators, the ψ-Daugavet property, and numerical indices. Positivity 9, 607–623 (2005) es_ES
dc.relation.references S., Okada, W. J. Ricker, E.A. Sánchez Pérez, Optimal Domain and Integral Extension of Operators acting in Function Spaces., Oper. Theory Adv. Appl. 180, Birkhäuser, Basel, 2008. es_ES
dc.relation.references Sánchez Pérez E.A., Werner D.: The geometry of L p -spaces over atomless measure spaces and the Daugavet property. Banach J. Math. Anal. 5, 167–180 (2011) es_ES
dc.relation.references H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974. es_ES
dc.relation.references Werner D.: Recent progress on the Daugavet property, Irish Math. Soc. Bulletin 46, 77–97 (2001) es_ES


This item appears in the following Collection(s)

Show simple item record