- -

Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials

Show full item record

Ivan Tobón, J.; Paya Bernabeu, JJ.; Borrachero Rosado, MV.; Soriano Martinez, L.; Restrepo Baena, OJ. (2012). Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. Journal of Thermal Analysis and Calorimetry. 107:233-239. doi:10.1007/s10973-010-0997-0

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/49040

Files in this item

Item Metadata

Title: Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials
Author: Ivan Tobón, Jorge Paya Bernabeu, Jorge Juan Borrachero Rosado, María Victoria Soriano Martínez, Lourdes Restrepo Baena, Oscar Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
Abstract:
In this article, the methodology to implementation of high resolution thermogravimetric analysis (HRTG) for construction materials like Portland cement pastes is presented. The aim of this technique is to make easier the ...[+]
Subjects: Decomposition , High resolution thermogravimetry , Portland cement , Variable heating rate , Cement paste , Cementitious materials , Decomposition reaction , High resolution , High-resolution thermogravimetric analysis , Mineral phasis , Optimum parameters , Portland cement paste , Purge gas , Reproducibilities , Temperature range , Heating rate , Thermogravimetric analysis
Copyrigths: Reserva de todos los derechos
Source:
Journal of Thermal Analysis and Calorimetry. (issn: 1388-6150 ) (eissn: 1572-8943 )
DOI: 10.1007/s10973-010-0997-0
Publisher:
Akadémiai Kiadó
Publisher version: http://dx.doi.org/10.1007/s10973-010-0997-0
Type: Artículo

References

Borrachero MV, Payá J, Bonilla M, Monzó J. The use of thermogravimetric analysis technique for the characterization of construction materials: the gypsum case. J Therm Anal Calorim. 2008;91–92:503–9.

Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH. Thermal analysis of construction materials. Building materials series. New York: Noyes Publications; 2003.

Ramachandran VS. Application of differential thermal analysis in cement chemistry. New York: Chemical Publishing Co., Inc.; 1969. [+]
Borrachero MV, Payá J, Bonilla M, Monzó J. The use of thermogravimetric analysis technique for the characterization of construction materials: the gypsum case. J Therm Anal Calorim. 2008;91–92:503–9.

Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH. Thermal analysis of construction materials. Building materials series. New York: Noyes Publications; 2003.

Ramachandran VS. Application of differential thermal analysis in cement chemistry. New York: Chemical Publishing Co., Inc.; 1969.

Vechio S, La Ginestra A, Frezza A, Ferragine C. The use thermoanalytical techniques in the characterization of ancient mortars. Thermochim Acta. 1993;227:215–23.

Anastiasiou M, Hasapis Yh, Zorba T, Pavlidou E, Chfissafis K, Parasakevopoulos KM. TGA-DTA and FTIR analyses of plasters form byzantine monuments in Balkan region. J Therm Anal Calorim. 2006;84:27–32.

Brown ME. Introduction to thermal analysis technique and applications. London: Chapman and Hall; 1998.

Riesen R. Adjustment of heating rate for maximum resolution in TG and TMA (MaxRes). J Therm Anal Calorim. 1998;53:365–74.

Haines PJ. Thermal methods of analysis. London: Blackie Academic Professional; 1995.

Dweck J, Büchler PM, Celho ACV, Cartledge FK. Hydration of cement bended with calcium carbonate. Thermochim Acta. 2000;346:105–13.

Pacewska JB, Wilinska I, Bukowska M, Blonkowski G, Nocun-Wczelik WJ. An attempt to improve the pozzolanic activity of waste aluminosilicate catalyst. J Therm Anal Calorim. 2004;77:133–42.

Payá J, Monzó J, Borrachero MV, Velazquez S. Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R) thermogravimetric analysis studies of FC3R-Portland cement pastes. Cem Concr Res. 2003;33:603–9.

Pinto CA, Büchler PM, Dweck JJ. Pozzolanic properties of a residual FCC catalyst during the early stages of cement hydration. J Therm Anal Calorim. 2007;87:715–20.

Rojas MF, Cabrera J. The effect of temperature on the hydration rate and stability of the hydration phases of metakaolin-lime water systems. Cem Concr Res. 2002;32:133–8.

Dweck J, Ferreira Da Silva PF, Silva Aderne R, Büchler PM, Cartledge Fk. Evaluating cement hydration by non-conventional DTA: an application to waste solidification. J Therm Anal Calorim. 2003;71:821–7.

Criado JM, Pérez-Maqueda LA, Diánez MJ, Sánchez-Jiménez PE. Development of a universal constant rate thermal analysis system for being used with any thermoanalytical instrument. J Therm Anal Calorim. 2007;87:297–300.

Gill PS, Sauerbrunn SR, Crowe BS. High resolution thermogravimetry. J Therm Anal Calorim. 1992;38:255–66.

Frost RL, Martens W, Ding Z, Kloprogge JT. DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn. J Therm Anal Calorim. 2003;71:429–38.

Ozawa T. Controlled rate thermogravimetry new usefulness of controlled rate thermogravimetry revealed by decomposition of polyimide. J Therm Anal Calorim. 2000;59:375–84.

Zanier A. High resolution TG for characterization of diesel fuel additives. J Therm Anal Calorim. 2001;64:377–84.

Mojundar SC, Sain M, Prasad RC, Sun L, Venart ES. Selected thermoanalytical methods and their applications from medicine to construction. Part I. J Therm Anal Calorim. 2007;90:653–62.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record