Mostrar el registro sencillo del ítem
dc.contributor.author | Domenech Carbo, Antonio | es_ES |
dc.contributor.author | Domenech Carbo, Mª Teresa | es_ES |
dc.contributor.author | Pasies Oviedo, Trinidad | es_ES |
dc.contributor.author | Bouzas Bello, María del Carmen | es_ES |
dc.date.accessioned | 2015-04-29T11:37:26Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1040-0397 | |
dc.identifier.uri | http://hdl.handle.net/10251/49461 | |
dc.description.abstract | Voltammetry of microparticles is applied to the identification of lead corrosion products by means of an essentially non-invasive 'one-touch' technique based on the use of graphite pencil. This methodology permits the mechanical attachment of few nanograms of sample from the surface of lead archaeological artefacts to a paraffin-impregnated graphite electrode, which, upon immersion in aqueous electrolytes, provides distinctive voltammetric responses for litharge and cotunnite- anglesite-, cerusite-based corrosion products. The reported method is applied to the identification of corrosion products in archaeological lead pieces from different Iberian sites in Valencia (Spain). © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | es_ES |
dc.description.sponsorship | Financial support is gratefully acknowledged from the MEC Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds. The authors would like to thank to Dr. Jose Luis Moya Lopez and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politecncia de Valencia) for their technical support. We would like to appreciate to Consuelo Matamoros to the Conselleria de Turismo, Cultura I Esport of the Generalitat Valenciana, and the Museu de Prehistoria deValencia, where this hoard was deposited, especially to the director Helena Bonet and the curator Manuel Gozalbes. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Electroanalysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Archaeological lead | es_ES |
dc.subject | Corrosion products | es_ES |
dc.subject | Non-invasive analysis | es_ES |
dc.subject | Voltammetry of microparticles | es_ES |
dc.subject.classification | PINTURA | es_ES |
dc.title | Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/elan.201100577 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2011-28079-C03-01/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALISIS DE OBRA PICTORICA BASADOS EN LA TECNICA DE MICROSCOPIA DE FUERZA ATOMICA-VOLTAMETRIA DE NANOPARTICULAS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2011-28079-C03-02/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALSISIS DE OBRAS PICTORICAS BASADOS EN "ONE-TOUCH", "LAYER-BY-LAYER" VOLTAMPEROMETRIA DE MICRO%2FNANOPARTICULAS Y MICROSCOPIA ELEC/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals | es_ES |
dc.description.bibliographicCitation | Domenech Carbo, A.; Domenech Carbo, MT.; Pasies Oviedo, T.; Bouzas Bello, MDC. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis. 23(12):2803-2812. doi:10.1002/elan.201100577 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/ 10.1002/elan.201100577 | es_ES |
dc.description.upvformatpinicio | 2803 | es_ES |
dc.description.upvformatpfin | 2812 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 214690 | |
dc.identifier.eissn | 1521-4109 | |
dc.contributor.funder | Museu de Prehistoria de Valencia | es_ES |
dc.contributor.funder | Museu Arqueologic de Borriana | es_ES |
dc.description.references | Scott, D. A. (1990). Bronze Disease: A Review of Some Chemical Problems and the Role of Relative Humidity. Journal of the American Institute for Conservation, 29(2), 193. doi:10.2307/3179583 | es_ES |
dc.description.references | INGO, G. M., MANFREDI, L.-I., BULTRINI, G., & PICCOLO, E. L. O. (1997). QUANTITATIVE ANALYSIS OF COPPER-TIN BRONZES BY MEANS OF GLOW DISCHARGE OPTICAL EMISSION SPECTROMETRY. Archaeometry, 39(1), 59-70. doi:10.1111/j.1475-4754.1997.tb00790.x | es_ES |
dc.description.references | Attanasio, D., Bultrini, G., & Ingo, G. M. (2001). The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry, 43(4), 529-547. doi:10.1111/1475-4754.00035 | es_ES |
dc.description.references | Lins, P. A., & Oddy, W. A. (1975). The origins of mercury gilding. Journal of Archaeological Science, 2(4), 365-373. doi:10.1016/0305-4403(75)90007-2 | es_ES |
dc.description.references | Linke, R., Schreiner, M., Demortier, G., & Alram, M. (2003). Determination of the provenance of medieval silver coins: potential and limitations of x-ray analysis using photons, electrons or protons. X-Ray Spectrometry, 32(5), 373-380. doi:10.1002/xrs.654 | es_ES |
dc.description.references | Santra, S., Mitra, D., Sarkar, M., Bhattacharya, D., Denker, A., Opitz-Coutureau, J., & Rauschenberg, J. (2005). Analysis of some coins by energy dispersive X-ray fluorescence (EDXRF) and high energy particle induced X-ray emission (PIXE) techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 229(3-4), 465-470. doi:10.1016/j.nimb.2004.12.125 | es_ES |
dc.description.references | Meyer, M.-A., & Demortier, G. (1990). Nonvacuum analyses of silver coins (9th to 15th century A.D.). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 49(1-4), 300-304. doi:10.1016/0168-583x(90)90264-u | es_ES |
dc.description.references | Tripathy, B. B., Rautray, T. R., Rautray, A. C., & Vijayan, V. (2010). Elemental analysis of silver coins by PIXE technique. Applied Radiation and Isotopes, 68(3), 454-458. doi:10.1016/j.apradiso.2009.12.031 | es_ES |
dc.description.references | Guerra, M. F., Radtke, M., Reiche, I., Riesemeier, H., & Strub, E. (2008). Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(10), 2334-2338. doi:10.1016/j.nimb.2008.03.008 | es_ES |
dc.description.references | Ingo, G. M., Angelini, E., de Caro, T., & Bultrini, G. (2004). Combined use of surface and micro-analytical techniques for the study of ancient coins. Applied Physics A, 79(2), 171-176. doi:10.1007/s00339-004-2510-8 | es_ES |
dc.description.references | Rajurkar, N. S., Bhadane, R. P., & Angal, D. G. (1993). Multielemental instrumental neutron activation analysis of some ancient Indian coins. Applied Radiation and Isotopes, 44(4), 781-782. doi:10.1016/0969-8043(93)90150-9 | es_ES |
dc.description.references | Pappalardo, G., Esposito, A., Cirrone, G. A., Cuttone, G., Garraffo, S., Pappalardo, L., … Russo, S. (2008). Effects of the behaviour of the proton-induced isotopes production on the analysis of ancient alloys. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(10), 2286-2291. doi:10.1016/j.nimb.2008.03.074 | es_ES |
dc.description.references | Guerra, M. F. (1998). Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance. X-Ray Spectrometry, 27(2), 73-80. doi:10.1002/(sici)1097-4539(199803/04)27:2<73::aid-xrs249>3.0.co;2-5 | es_ES |
dc.description.references | Guerra, M. F. (2008). An overview on the ancient goldsmith’s skill and the circulation of gold in the past: the role of x-ray based techniques. X-Ray Spectrometry, 37(4), 317-327. doi:10.1002/xrs.1013 | es_ES |
dc.description.references | Rizzo, F., Cirrone, G. P., Cuttone, G., Esposito, A., Garraffo, S., Pappalardo, G., … Russo, S. (2011). Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A.D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchemical Journal, 97(2), 286-290. doi:10.1016/j.microc.2010.09.017 | es_ES |
dc.description.references | Archaeometry 2011 | es_ES |
dc.description.references | Reich, S., Leitus, G., & Shalev, S. (2003). Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 99-99. doi:10.1088/1367-2630/5/1/399 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q | es_ES |
dc.description.references | Grygar, T., Marken, F., Schröder, U., & Scholz, F. (2002). Electrochemical Analysis of Solids. A Review. Collection of Czechoslovak Chemical Communications, 67(2), 163-208. doi:10.1135/cccc20020163 | es_ES |
dc.description.references | Scholz, F., Nitschke, L., & Henrion, G. (1990). Abrasive stripping voltammetric analysis of tin—bismuth. Electroanalysis, 2(1), 85-87. doi:10.1002/elan.1140020116 | es_ES |
dc.description.references | Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 | es_ES |
dc.description.references | Degrigny, C., Guibert, G., Ramseyer, S., Rapp, G., & Tarchini, A. (2009). Use of E corr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects: the SPAMT Test Project. Journal of Solid State Electrochemistry, 14(3), 425-435. doi:10.1007/s10008-009-0890-6 | es_ES |
dc.description.references | Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719 | es_ES |
dc.description.references | Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 | es_ES |
dc.description.references | Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3 | es_ES |
dc.description.references | Electrochemistry for Conservation Science 2010 14 | es_ES |
dc.description.references | Scott, D. A. (1985). Periodic Corrosion Phenomena in Bronze Antiquities. Studies in Conservation, 30(2), 49. doi:10.2307/1506088 | es_ES |
dc.description.references | Hawkins, D. T. (1987). The restoration of metal monuments: a bibliography, 1933–1986. Corrosion Science, 27(7), 771-782. doi:10.1016/0010-938x(87)90055-2 | es_ES |
dc.description.references | Robbiola, L., Queixalos, I., Hurtel, L.-P., Pernot, M., Volfovsky, C., & Hurtel, L.-P. (1988). Etude de la corrosion de bronzes archeologiques du Fort-Harrouard: alteration externe et mecanisme d’alteration stratifiee. Studies in Conservation, 33(4), 205. doi:10.2307/1506315 | es_ES |
dc.description.references | Graedel, T. E., Nassau, K., & Franey, J. P. (1987). Copper patinas formed in the atmosphere—I. Introduction. Corrosion Science, 27(7), 639-657. doi:10.1016/0010-938x(87)90047-3 | es_ES |
dc.description.references | Veleva, L., Quintana, P., Ramanauskas, R., Pomes, R., & Maldonado, L. (1996). Mechanism of copper patina formation in marine environments. Electrochimica Acta, 41(10), 1641-1645. doi:10.1016/0013-4686(95)00417-3 | es_ES |
dc.description.references | Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1 | es_ES |
dc.description.references | Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739 | es_ES |
dc.description.references | Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002 | es_ES |
dc.description.references | Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317 | es_ES |
dc.description.references | Rodríguez-Acuña, F., Genescá, J., & Uruchurtu, J. (2009). Electrochemical evaluation of patinas formed on nineteenth century bronze bells. Journal of Applied Electrochemistry, 40(2), 311-320. doi:10.1007/s10800-009-9977-0 | es_ES |
dc.description.references | Slepushkin, V. V., Rublinetskaya, Y. V., & Stifatov, B. M. (2005). Local electrochemical surface analysis. Journal of Analytical Chemistry, 60(2), 103-106. doi:10.1007/s10809-005-0030-0 | es_ES |
dc.description.references | Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2009). A standard-free method for the local electrochemical analysis of heterogeneous alloys. Journal of Analytical Chemistry, 64(5), 509-512. doi:10.1134/s106193480905013x | es_ES |
dc.description.references | Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2011). A standardless method for the local electrochemical analysis of homogeneous alloys. Journal of Analytical Chemistry, 66(1), 84-87. doi:10.1134/s1061934810111024 | es_ES |
dc.description.references | Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333 | es_ES |
dc.description.references | Hallazgo numismático en la calle Libertad, seu de les Corts Valencianes 1994 | es_ES |
dc.description.references | Scott, D. A. (2000). A Review of Copper Chlorides and Related Salts in Bronze Corrosion and as Painting Pigments. Studies in Conservation, 45(1), 39. doi:10.2307/1506682 | es_ES |
dc.description.references | Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6 | es_ES |
dc.description.references | Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3 | es_ES |
dc.description.references | Cronyn, J. M. (2003). Elements of Archaeological Conservation. doi:10.4324/9780203169223 | es_ES |
dc.description.references | Scott, D. A. (1997). Copper Compounds in Metals and Colorants: Oxides and Hydroxides. Studies in Conservation, 42(2), 93. doi:10.2307/1506620 | es_ES |
dc.description.references | Chatterjee, A., Wiltshire, R., Holt, K. B., Compton, R. G., Foord, J. S., & Marken, F. (2002). Abrasive stripping voltammetry of silver and tin at boron-doped diamond electrodes. Diamond and Related Materials, 11(3-6), 646-650. doi:10.1016/s0925-9635(01)00670-7 | es_ES |
dc.description.references | Cepriá, G., Roque, J., Molera, J., Pérez-Arantegui, J., & Vendrell, M. (2007). Electroanalytical Study of the Composition of the Raw Pigment Mixtures that Yield the Metallic Lustre on Ceramics. A Link Between Composition and Final Result. Electroanalysis, 19(11), 1167-1176. doi:10.1002/elan.200603818 | es_ES |
dc.description.references | Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m | es_ES |
dc.description.references | Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1 | es_ES |
dc.description.references | Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7 | es_ES |
dc.description.references | Hasse, U., & Scholz, F. (2005). In situ AFM observation of the electrochemical reduction of a single silver sulphide crystal and the recrystallization of the resulting silver crystal. Electrochemistry Communications, 7(2), 173-176. doi:10.1016/j.elecom.2004.12.003 | es_ES |
dc.description.references | Babyak, C., & Smart, R. B. (2004). Electrochemical Detection of Trace Concentrations of Cadmium and Lead with a Boron-Doped Diamond Electrode: Effect of KCl and KNO3 Electrolytes, Interferences and Measurement in River Water. Electroanalysis, 16(3), 175-182. doi:10.1002/elan.200302794 | es_ES |
dc.description.references | Dragoe, D., Spătaru, N., Kawasaki, R., Manivannan, A., Spătaru, T., Tryk, D. A., & Fujishima, A. (2006). Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochimica Acta, 51(12), 2437-2441. doi:10.1016/j.electacta.2005.07.022 | es_ES |
dc.description.references | Sonthalia, P., McGaw, E., Show, Y., & Swain, G. M. (2004). Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode. Analytica Chimica Acta, 522(1), 35-44. doi:10.1016/j.aca.2004.06.071 | es_ES |
dc.description.references | Prado, C., Wilkins, S. J., Marken, F., & Compton, R. G. (2002). Simultaneous Electrochemical Detection and Determination of Lead and Copper at Boron-Doped Diamond Film Electrodes. Electroanalysis, 14(4), 262-272. doi:10.1002/1521-4109(200202)14:4<262::aid-elan262>3.0.co;2-d | es_ES |
dc.description.references | El Tall, O., Jaffrezic-Renault, N., Sigaud, M., & Vittori, O. (2007). Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron-Doped Diamond Electrode. Electroanalysis, 19(11), 1152-1159. doi:10.1002/elan.200603834 | es_ES |
dc.description.references | Saterlay, A. J., Wilkins, S. J., Goeting, C. H., Foord, J. S., Compton, R. G., & Marken, F. (2000). Sonoelectrochemistry at highly boron-doped diamond electrodes: silver oxide deposition and electrocatalysis in the presence of ultrasound. Journal of Solid State Electrochemistry, 4(7), 383-389. doi:10.1007/s100080000140 | es_ES |
dc.description.references | Lee, J. I., Howard, S. M., Kellar, J. J., Han, K. N., & Cross, W. (2001). Electrochemical interaction between silver and sulfur in sodium sulfide solutions. Metallurgical and Materials Transactions B, 32(5), 895-901. doi:10.1007/s11663-001-0075-x | es_ES |
dc.description.references | Frueh, A. J. (1958). The Crystallography of Silver Sulfide, Ag2S. Zeitschrift für Kristallographie, 110(1-6), 136-144. doi:10.1524/zkri.1958.110.1-6.136 | es_ES |
dc.description.references | Wang, X., Zhang, S., & Zhang, Z. (2008). Synthesis of hexagonal nanosized silver sulfide at room temperature. Materials Chemistry and Physics, 107(1), 9-12. doi:10.1016/j.matchemphys.2007.07.015 | es_ES |
dc.description.references | Nicholson, R. S. (1965). Some Examples of the Numerical Solution of Nonlinear Integral Equations. Analytical Chemistry, 37(6), 667-671. doi:10.1021/ac60225a009 | es_ES |
dc.description.references | Mirčeski, V., Gulaboski, R., & Scholz, F. (2004). Square-wave thin-film voltammetry: influence of uncompensated resistance and charge transfer kinetics. Journal of Electroanalytical Chemistry, 566(2), 351-360. doi:10.1016/j.jelechem.2003.11.046 | es_ES |
dc.description.references | Grygar, T. (1998). Phenomenological kinetics of irreversible electrochemical dissolution of metal-oxide microparticles. Journal of Solid State Electrochemistry, 2(3), 127-136. doi:10.1007/s100080050077 | es_ES |