- -

Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domenech Carbo, Antonio es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Pasies Oviedo, Trinidad es_ES
dc.contributor.author Bouzas Bello, María del Carmen es_ES
dc.date.accessioned 2015-04-29T11:37:26Z
dc.date.issued 2011
dc.identifier.issn 1040-0397
dc.identifier.uri http://hdl.handle.net/10251/49461
dc.description.abstract Voltammetry of microparticles is applied to the identification of lead corrosion products by means of an essentially non-invasive 'one-touch' technique based on the use of graphite pencil. This methodology permits the mechanical attachment of few nanograms of sample from the surface of lead archaeological artefacts to a paraffin-impregnated graphite electrode, which, upon immersion in aqueous electrolytes, provides distinctive voltammetric responses for litharge and cotunnite- anglesite-, cerusite-based corrosion products. The reported method is applied to the identification of corrosion products in archaeological lead pieces from different Iberian sites in Valencia (Spain). © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. es_ES
dc.description.sponsorship Financial support is gratefully acknowledged from the MEC Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds. The authors would like to thank to Dr. Jose Luis Moya Lopez and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politecncia de Valencia) for their technical support. We would like to appreciate to Consuelo Matamoros to the Conselleria de Turismo, Cultura I Esport of the Generalitat Valenciana, and the Museu de Prehistoria deValencia, where this hoard was deposited, especially to the director Helena Bonet and the curator Manuel Gozalbes. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Electroanalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Archaeological lead es_ES
dc.subject Corrosion products es_ES
dc.subject Non-invasive analysis es_ES
dc.subject Voltammetry of microparticles es_ES
dc.subject.classification PINTURA es_ES
dc.title Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/elan.201100577
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2011-28079-C03-01/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALISIS DE OBRA PICTORICA BASADOS EN LA TECNICA DE MICROSCOPIA DE FUERZA ATOMICA-VOLTAMETRIA DE NANOPARTICULAS/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2011-28079-C03-02/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALSISIS DE OBRAS PICTORICAS BASADOS EN "ONE-TOUCH", "LAYER-BY-LAYER" VOLTAMPEROMETRIA DE MICRO%2FNANOPARTICULAS Y MICROSCOPIA ELEC/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Domenech Carbo, A.; Domenech Carbo, MT.; Pasies Oviedo, T.; Bouzas Bello, MDC. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis. 23(12):2803-2812. doi:10.1002/elan.201100577 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/ 10.1002/elan.201100577 es_ES
dc.description.upvformatpinicio 2803 es_ES
dc.description.upvformatpfin 2812 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 214690
dc.identifier.eissn 1521-4109
dc.contributor.funder Museu de Prehistoria de Valencia es_ES
dc.contributor.funder Museu Arqueologic de Borriana es_ES
dc.description.references Scott, D. A. (1990). Bronze Disease: A Review of Some Chemical Problems and the Role of Relative Humidity. Journal of the American Institute for Conservation, 29(2), 193. doi:10.2307/3179583 es_ES
dc.description.references INGO, G. M., MANFREDI, L.-I., BULTRINI, G., & PICCOLO, E. L. O. (1997). QUANTITATIVE ANALYSIS OF COPPER-TIN BRONZES BY MEANS OF GLOW DISCHARGE OPTICAL EMISSION SPECTROMETRY. Archaeometry, 39(1), 59-70. doi:10.1111/j.1475-4754.1997.tb00790.x es_ES
dc.description.references Attanasio, D., Bultrini, G., & Ingo, G. M. (2001). The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry, 43(4), 529-547. doi:10.1111/1475-4754.00035 es_ES
dc.description.references Lins, P. A., & Oddy, W. A. (1975). The origins of mercury gilding. Journal of Archaeological Science, 2(4), 365-373. doi:10.1016/0305-4403(75)90007-2 es_ES
dc.description.references Linke, R., Schreiner, M., Demortier, G., & Alram, M. (2003). Determination of the provenance of medieval silver coins: potential and limitations of x-ray analysis using photons, electrons or protons. X-Ray Spectrometry, 32(5), 373-380. doi:10.1002/xrs.654 es_ES
dc.description.references Santra, S., Mitra, D., Sarkar, M., Bhattacharya, D., Denker, A., Opitz-Coutureau, J., & Rauschenberg, J. (2005). Analysis of some coins by energy dispersive X-ray fluorescence (EDXRF) and high energy particle induced X-ray emission (PIXE) techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 229(3-4), 465-470. doi:10.1016/j.nimb.2004.12.125 es_ES
dc.description.references Meyer, M.-A., & Demortier, G. (1990). Nonvacuum analyses of silver coins (9th to 15th century A.D.). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 49(1-4), 300-304. doi:10.1016/0168-583x(90)90264-u es_ES
dc.description.references Tripathy, B. B., Rautray, T. R., Rautray, A. C., & Vijayan, V. (2010). Elemental analysis of silver coins by PIXE technique. Applied Radiation and Isotopes, 68(3), 454-458. doi:10.1016/j.apradiso.2009.12.031 es_ES
dc.description.references Guerra, M. F., Radtke, M., Reiche, I., Riesemeier, H., & Strub, E. (2008). Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(10), 2334-2338. doi:10.1016/j.nimb.2008.03.008 es_ES
dc.description.references Ingo, G. M., Angelini, E., de Caro, T., & Bultrini, G. (2004). Combined use of surface and micro-analytical techniques for the study of ancient coins. Applied Physics A, 79(2), 171-176. doi:10.1007/s00339-004-2510-8 es_ES
dc.description.references Rajurkar, N. S., Bhadane, R. P., & Angal, D. G. (1993). Multielemental instrumental neutron activation analysis of some ancient Indian coins. Applied Radiation and Isotopes, 44(4), 781-782. doi:10.1016/0969-8043(93)90150-9 es_ES
dc.description.references Pappalardo, G., Esposito, A., Cirrone, G. A., Cuttone, G., Garraffo, S., Pappalardo, L., … Russo, S. (2008). Effects of the behaviour of the proton-induced isotopes production on the analysis of ancient alloys. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(10), 2286-2291. doi:10.1016/j.nimb.2008.03.074 es_ES
dc.description.references Guerra, M. F. (1998). Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance. X-Ray Spectrometry, 27(2), 73-80. doi:10.1002/(sici)1097-4539(199803/04)27:2<73::aid-xrs249>3.0.co;2-5 es_ES
dc.description.references Guerra, M. F. (2008). An overview on the ancient goldsmith’s skill and the circulation of gold in the past: the role of x-ray based techniques. X-Ray Spectrometry, 37(4), 317-327. doi:10.1002/xrs.1013 es_ES
dc.description.references Rizzo, F., Cirrone, G. P., Cuttone, G., Esposito, A., Garraffo, S., Pappalardo, G., … Russo, S. (2011). Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A.D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchemical Journal, 97(2), 286-290. doi:10.1016/j.microc.2010.09.017 es_ES
dc.description.references Archaeometry 2011 es_ES
dc.description.references Reich, S., Leitus, G., & Shalev, S. (2003). Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 99-99. doi:10.1088/1367-2630/5/1/399 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q es_ES
dc.description.references Grygar, T., Marken, F., Schröder, U., & Scholz, F. (2002). Electrochemical Analysis of Solids. A Review. Collection of Czechoslovak Chemical Communications, 67(2), 163-208. doi:10.1135/cccc20020163 es_ES
dc.description.references Scholz, F., Nitschke, L., & Henrion, G. (1990). Abrasive stripping voltammetric analysis of tin—bismuth. Electroanalysis, 2(1), 85-87. doi:10.1002/elan.1140020116 es_ES
dc.description.references Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 es_ES
dc.description.references Degrigny, C., Guibert, G., Ramseyer, S., Rapp, G., & Tarchini, A. (2009). Use of E corr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects: the SPAMT Test Project. Journal of Solid State Electrochemistry, 14(3), 425-435. doi:10.1007/s10008-009-0890-6 es_ES
dc.description.references Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719 es_ES
dc.description.references Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 es_ES
dc.description.references Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3 es_ES
dc.description.references Electrochemistry for Conservation Science 2010 14 es_ES
dc.description.references Scott, D. A. (1985). Periodic Corrosion Phenomena in Bronze Antiquities. Studies in Conservation, 30(2), 49. doi:10.2307/1506088 es_ES
dc.description.references Hawkins, D. T. (1987). The restoration of metal monuments: a bibliography, 1933–1986. Corrosion Science, 27(7), 771-782. doi:10.1016/0010-938x(87)90055-2 es_ES
dc.description.references Robbiola, L., Queixalos, I., Hurtel, L.-P., Pernot, M., Volfovsky, C., & Hurtel, L.-P. (1988). Etude de la corrosion de bronzes archeologiques du Fort-Harrouard: alteration externe et mecanisme d’alteration stratifiee. Studies in Conservation, 33(4), 205. doi:10.2307/1506315 es_ES
dc.description.references Graedel, T. E., Nassau, K., & Franey, J. P. (1987). Copper patinas formed in the atmosphere—I. Introduction. Corrosion Science, 27(7), 639-657. doi:10.1016/0010-938x(87)90047-3 es_ES
dc.description.references Veleva, L., Quintana, P., Ramanauskas, R., Pomes, R., & Maldonado, L. (1996). Mechanism of copper patina formation in marine environments. Electrochimica Acta, 41(10), 1641-1645. doi:10.1016/0013-4686(95)00417-3 es_ES
dc.description.references Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739 es_ES
dc.description.references Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002 es_ES
dc.description.references Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317 es_ES
dc.description.references Rodríguez-Acuña, F., Genescá, J., & Uruchurtu, J. (2009). Electrochemical evaluation of patinas formed on nineteenth century bronze bells. Journal of Applied Electrochemistry, 40(2), 311-320. doi:10.1007/s10800-009-9977-0 es_ES
dc.description.references Slepushkin, V. V., Rublinetskaya, Y. V., & Stifatov, B. M. (2005). Local electrochemical surface analysis. Journal of Analytical Chemistry, 60(2), 103-106. doi:10.1007/s10809-005-0030-0 es_ES
dc.description.references Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2009). A standard-free method for the local electrochemical analysis of heterogeneous alloys. Journal of Analytical Chemistry, 64(5), 509-512. doi:10.1134/s106193480905013x es_ES
dc.description.references Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2011). A standardless method for the local electrochemical analysis of homogeneous alloys. Journal of Analytical Chemistry, 66(1), 84-87. doi:10.1134/s1061934810111024 es_ES
dc.description.references Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333 es_ES
dc.description.references Hallazgo numismático en la calle Libertad, seu de les Corts Valencianes 1994 es_ES
dc.description.references Scott, D. A. (2000). A Review of Copper Chlorides and Related Salts in Bronze Corrosion and as Painting Pigments. Studies in Conservation, 45(1), 39. doi:10.2307/1506682 es_ES
dc.description.references Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6 es_ES
dc.description.references Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3 es_ES
dc.description.references Cronyn, J. M. (2003). Elements of Archaeological Conservation. doi:10.4324/9780203169223 es_ES
dc.description.references Scott, D. A. (1997). Copper Compounds in Metals and Colorants: Oxides and Hydroxides. Studies in Conservation, 42(2), 93. doi:10.2307/1506620 es_ES
dc.description.references Chatterjee, A., Wiltshire, R., Holt, K. B., Compton, R. G., Foord, J. S., & Marken, F. (2002). Abrasive stripping voltammetry of silver and tin at boron-doped diamond electrodes. Diamond and Related Materials, 11(3-6), 646-650. doi:10.1016/s0925-9635(01)00670-7 es_ES
dc.description.references Cepriá, G., Roque, J., Molera, J., Pérez-Arantegui, J., & Vendrell, M. (2007). Electroanalytical Study of the Composition of the Raw Pigment Mixtures that Yield the Metallic Lustre on Ceramics. A Link Between Composition and Final Result. Electroanalysis, 19(11), 1167-1176. doi:10.1002/elan.200603818 es_ES
dc.description.references Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m es_ES
dc.description.references Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1 es_ES
dc.description.references Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7 es_ES
dc.description.references Hasse, U., & Scholz, F. (2005). In situ AFM observation of the electrochemical reduction of a single silver sulphide crystal and the recrystallization of the resulting silver crystal. Electrochemistry Communications, 7(2), 173-176. doi:10.1016/j.elecom.2004.12.003 es_ES
dc.description.references Babyak, C., & Smart, R. B. (2004). Electrochemical Detection of Trace Concentrations of Cadmium and Lead with a Boron-Doped Diamond Electrode: Effect of KCl and KNO3 Electrolytes, Interferences and Measurement in River Water. Electroanalysis, 16(3), 175-182. doi:10.1002/elan.200302794 es_ES
dc.description.references Dragoe, D., Spătaru, N., Kawasaki, R., Manivannan, A., Spătaru, T., Tryk, D. A., & Fujishima, A. (2006). Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochimica Acta, 51(12), 2437-2441. doi:10.1016/j.electacta.2005.07.022 es_ES
dc.description.references Sonthalia, P., McGaw, E., Show, Y., & Swain, G. M. (2004). Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode. Analytica Chimica Acta, 522(1), 35-44. doi:10.1016/j.aca.2004.06.071 es_ES
dc.description.references Prado, C., Wilkins, S. J., Marken, F., & Compton, R. G. (2002). Simultaneous Electrochemical Detection and Determination of Lead and Copper at Boron-Doped Diamond Film Electrodes. Electroanalysis, 14(4), 262-272. doi:10.1002/1521-4109(200202)14:4<262::aid-elan262>3.0.co;2-d es_ES
dc.description.references El Tall, O., Jaffrezic-Renault, N., Sigaud, M., & Vittori, O. (2007). Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron-Doped Diamond Electrode. Electroanalysis, 19(11), 1152-1159. doi:10.1002/elan.200603834 es_ES
dc.description.references Saterlay, A. J., Wilkins, S. J., Goeting, C. H., Foord, J. S., Compton, R. G., & Marken, F. (2000). Sonoelectrochemistry at highly boron-doped diamond electrodes: silver oxide deposition and electrocatalysis in the presence of ultrasound. Journal of Solid State Electrochemistry, 4(7), 383-389. doi:10.1007/s100080000140 es_ES
dc.description.references Lee, J. I., Howard, S. M., Kellar, J. J., Han, K. N., & Cross, W. (2001). Electrochemical interaction between silver and sulfur in sodium sulfide solutions. Metallurgical and Materials Transactions B, 32(5), 895-901. doi:10.1007/s11663-001-0075-x es_ES
dc.description.references Frueh, A. J. (1958). The Crystallography of Silver Sulfide, Ag2S. Zeitschrift für Kristallographie, 110(1-6), 136-144. doi:10.1524/zkri.1958.110.1-6.136 es_ES
dc.description.references Wang, X., Zhang, S., & Zhang, Z. (2008). Synthesis of hexagonal nanosized silver sulfide at room temperature. Materials Chemistry and Physics, 107(1), 9-12. doi:10.1016/j.matchemphys.2007.07.015 es_ES
dc.description.references Nicholson, R. S. (1965). Some Examples of the Numerical Solution of Nonlinear Integral Equations. Analytical Chemistry, 37(6), 667-671. doi:10.1021/ac60225a009 es_ES
dc.description.references Mirčeski, V., Gulaboski, R., & Scholz, F. (2004). Square-wave thin-film voltammetry: influence of uncompensated resistance and charge transfer kinetics. Journal of Electroanalytical Chemistry, 566(2), 351-360. doi:10.1016/j.jelechem.2003.11.046 es_ES
dc.description.references Grygar, T. (1998). Phenomenological kinetics of irreversible electrochemical dissolution of metal-oxide microparticles. Journal of Solid State Electrochemistry, 2(3), 127-136. doi:10.1007/s100080050077 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem