- -

Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles

Mostrar el registro completo del ítem

Domenech Carbo, A.; Domenech Carbo, MT.; Pasies Oviedo, T.; Bouzas Bello, MDC. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis. 23(12):2803-2812. doi:10.1002/elan.201100577

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/49461

Ficheros en el ítem

Metadatos del ítem

Título: Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles
Autor: Domenech Carbo, Antonio Domenech Carbo, Mª Teresa Pasies Oviedo, Trinidad Bouzas Bello, María del Carmen
Entidad UPV: Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals
Fecha difusión:
Resumen:
Voltammetry of microparticles is applied to the identification of lead corrosion products by means of an essentially non-invasive 'one-touch' technique based on the use of graphite pencil. This methodology permits the ...[+]
Palabras clave: Archaeological lead , Corrosion products , Non-invasive analysis , Voltammetry of microparticles
Derechos de uso: Cerrado
Fuente:
Electroanalysis. (issn: 1040-0397 ) (eissn: 1521-4109 )
DOI: 10.1002/elan.201100577
Editorial:
Wiley-Blackwell
Versión del editor: http://dx.doi.org/ 10.1002/elan.201100577
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2011-28079-C03-01/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALISIS DE OBRA PICTORICA BASADOS EN LA TECNICA DE MICROSCOPIA DE FUERZA ATOMICA-VOLTAMETRIA DE NANOPARTICULAS/
info:eu-repo/grantAgreement/MINECO//CTQ2011-28079-C03-02/ES/DESARROLLO DE METODOS NANOELECTROQUIMICOS DE ANALSISIS DE OBRAS PICTORICAS BASADOS EN "ONE-TOUCH", "LAYER-BY-LAYER" VOLTAMPEROMETRIA DE MICRO%2FNANOPARTICULAS Y MICROSCOPIA ELEC/
Agradecimientos:
Financial support is gratefully acknowledged from the MEC Projects CTQ2011-28079-CO3-01 and 02 which are also supported with ERDF funds. The authors would like to thank to Dr. Jose Luis Moya Lopez and Mr. Manuel Planes ...[+]
Tipo: Artículo

References

Scott, D. A. (1990). Bronze Disease: A Review of Some Chemical Problems and the Role of Relative Humidity. Journal of the American Institute for Conservation, 29(2), 193. doi:10.2307/3179583

INGO, G. M., MANFREDI, L.-I., BULTRINI, G., & PICCOLO, E. L. O. (1997). QUANTITATIVE ANALYSIS OF COPPER-TIN BRONZES BY MEANS OF GLOW DISCHARGE OPTICAL EMISSION SPECTROMETRY. Archaeometry, 39(1), 59-70. doi:10.1111/j.1475-4754.1997.tb00790.x

Attanasio, D., Bultrini, G., & Ingo, G. M. (2001). The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry, 43(4), 529-547. doi:10.1111/1475-4754.00035 [+]
Scott, D. A. (1990). Bronze Disease: A Review of Some Chemical Problems and the Role of Relative Humidity. Journal of the American Institute for Conservation, 29(2), 193. doi:10.2307/3179583

INGO, G. M., MANFREDI, L.-I., BULTRINI, G., & PICCOLO, E. L. O. (1997). QUANTITATIVE ANALYSIS OF COPPER-TIN BRONZES BY MEANS OF GLOW DISCHARGE OPTICAL EMISSION SPECTROMETRY. Archaeometry, 39(1), 59-70. doi:10.1111/j.1475-4754.1997.tb00790.x

Attanasio, D., Bultrini, G., & Ingo, G. M. (2001). The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry, 43(4), 529-547. doi:10.1111/1475-4754.00035

Lins, P. A., & Oddy, W. A. (1975). The origins of mercury gilding. Journal of Archaeological Science, 2(4), 365-373. doi:10.1016/0305-4403(75)90007-2

Linke, R., Schreiner, M., Demortier, G., & Alram, M. (2003). Determination of the provenance of medieval silver coins: potential and limitations of x-ray analysis using photons, electrons or protons. X-Ray Spectrometry, 32(5), 373-380. doi:10.1002/xrs.654

Santra, S., Mitra, D., Sarkar, M., Bhattacharya, D., Denker, A., Opitz-Coutureau, J., & Rauschenberg, J. (2005). Analysis of some coins by energy dispersive X-ray fluorescence (EDXRF) and high energy particle induced X-ray emission (PIXE) techniques. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 229(3-4), 465-470. doi:10.1016/j.nimb.2004.12.125

Meyer, M.-A., & Demortier, G. (1990). Nonvacuum analyses of silver coins (9th to 15th century A.D.). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 49(1-4), 300-304. doi:10.1016/0168-583x(90)90264-u

Tripathy, B. B., Rautray, T. R., Rautray, A. C., & Vijayan, V. (2010). Elemental analysis of silver coins by PIXE technique. Applied Radiation and Isotopes, 68(3), 454-458. doi:10.1016/j.apradiso.2009.12.031

Guerra, M. F., Radtke, M., Reiche, I., Riesemeier, H., & Strub, E. (2008). Analysis of trace elements in gold alloys by SR-XRF at high energy at the BAMline. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(10), 2334-2338. doi:10.1016/j.nimb.2008.03.008

Ingo, G. M., Angelini, E., de Caro, T., & Bultrini, G. (2004). Combined use of surface and micro-analytical techniques for the study of ancient coins. Applied Physics A, 79(2), 171-176. doi:10.1007/s00339-004-2510-8

Rajurkar, N. S., Bhadane, R. P., & Angal, D. G. (1993). Multielemental instrumental neutron activation analysis of some ancient Indian coins. Applied Radiation and Isotopes, 44(4), 781-782. doi:10.1016/0969-8043(93)90150-9

Pappalardo, G., Esposito, A., Cirrone, G. A., Cuttone, G., Garraffo, S., Pappalardo, L., … Russo, S. (2008). Effects of the behaviour of the proton-induced isotopes production on the analysis of ancient alloys. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(10), 2286-2291. doi:10.1016/j.nimb.2008.03.074

Guerra, M. F. (1998). Analysis of archaeological metals. The place of XRF and PIXE in the determination of technology and provenance. X-Ray Spectrometry, 27(2), 73-80. doi:10.1002/(sici)1097-4539(199803/04)27:2<73::aid-xrs249>3.0.co;2-5

Guerra, M. F. (2008). An overview on the ancient goldsmith’s skill and the circulation of gold in the past: the role of x-ray based techniques. X-Ray Spectrometry, 37(4), 317-327. doi:10.1002/xrs.1013

Rizzo, F., Cirrone, G. P., Cuttone, G., Esposito, A., Garraffo, S., Pappalardo, G., … Russo, S. (2011). Non-destructive determination of the silver content in Roman coins (nummi), dated to 308–311 A.D., by the combined use of PIXE-alpha, XRF and DPAA techniques. Microchemical Journal, 97(2), 286-290. doi:10.1016/j.microc.2010.09.017

Archaeometry 2011

Reich, S., Leitus, G., & Shalev, S. (2003). Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 99-99. doi:10.1088/1367-2630/5/1/399

Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q

Grygar, T., Marken, F., Schröder, U., & Scholz, F. (2002). Electrochemical Analysis of Solids. A Review. Collection of Czechoslovak Chemical Communications, 67(2), 163-208. doi:10.1135/cccc20020163

Scholz, F., Nitschke, L., & Henrion, G. (1990). Abrasive stripping voltammetric analysis of tin—bismuth. Electroanalysis, 2(1), 85-87. doi:10.1002/elan.1140020116

Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8

Degrigny, C., Guibert, G., Ramseyer, S., Rapp, G., & Tarchini, A. (2009). Use of E corr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects: the SPAMT Test Project. Journal of Solid State Electrochemistry, 14(3), 425-435. doi:10.1007/s10008-009-0890-6

Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719

Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050

Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3

Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037

Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3

Electrochemistry for Conservation Science 2010 14

Scott, D. A. (1985). Periodic Corrosion Phenomena in Bronze Antiquities. Studies in Conservation, 30(2), 49. doi:10.2307/1506088

Hawkins, D. T. (1987). The restoration of metal monuments: a bibliography, 1933–1986. Corrosion Science, 27(7), 771-782. doi:10.1016/0010-938x(87)90055-2

Robbiola, L., Queixalos, I., Hurtel, L.-P., Pernot, M., Volfovsky, C., & Hurtel, L.-P. (1988). Etude de la corrosion de bronzes archeologiques du Fort-Harrouard: alteration externe et mecanisme d’alteration stratifiee. Studies in Conservation, 33(4), 205. doi:10.2307/1506315

Graedel, T. E., Nassau, K., & Franey, J. P. (1987). Copper patinas formed in the atmosphere—I. Introduction. Corrosion Science, 27(7), 639-657. doi:10.1016/0010-938x(87)90047-3

Veleva, L., Quintana, P., Ramanauskas, R., Pomes, R., & Maldonado, L. (1996). Mechanism of copper patina formation in marine environments. Electrochimica Acta, 41(10), 1641-1645. doi:10.1016/0013-4686(95)00417-3

Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1

Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739

Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002

Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317

Rodríguez-Acuña, F., Genescá, J., & Uruchurtu, J. (2009). Electrochemical evaluation of patinas formed on nineteenth century bronze bells. Journal of Applied Electrochemistry, 40(2), 311-320. doi:10.1007/s10800-009-9977-0

Slepushkin, V. V., Rublinetskaya, Y. V., & Stifatov, B. M. (2005). Local electrochemical surface analysis. Journal of Analytical Chemistry, 60(2), 103-106. doi:10.1007/s10809-005-0030-0

Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2009). A standard-free method for the local electrochemical analysis of heterogeneous alloys. Journal of Analytical Chemistry, 64(5), 509-512. doi:10.1134/s106193480905013x

Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2011). A standardless method for the local electrochemical analysis of homogeneous alloys. Journal of Analytical Chemistry, 66(1), 84-87. doi:10.1134/s1061934810111024

Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333

Hallazgo numismático en la calle Libertad, seu de les Corts Valencianes 1994

Scott, D. A. (2000). A Review of Copper Chlorides and Related Salts in Bronze Corrosion and as Painting Pigments. Studies in Conservation, 45(1), 39. doi:10.2307/1506682

Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6

Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3

Cronyn, J. M. (2003). Elements of Archaeological Conservation. doi:10.4324/9780203169223

Scott, D. A. (1997). Copper Compounds in Metals and Colorants: Oxides and Hydroxides. Studies in Conservation, 42(2), 93. doi:10.2307/1506620

Chatterjee, A., Wiltshire, R., Holt, K. B., Compton, R. G., Foord, J. S., & Marken, F. (2002). Abrasive stripping voltammetry of silver and tin at boron-doped diamond electrodes. Diamond and Related Materials, 11(3-6), 646-650. doi:10.1016/s0925-9635(01)00670-7

Cepriá, G., Roque, J., Molera, J., Pérez-Arantegui, J., & Vendrell, M. (2007). Electroanalytical Study of the Composition of the Raw Pigment Mixtures that Yield the Metallic Lustre on Ceramics. A Link Between Composition and Final Result. Electroanalysis, 19(11), 1167-1176. doi:10.1002/elan.200603818

Meyer, B., Ziemer, B., & Scholz, F. (1995). In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. Journal of Electroanalytical Chemistry, 392(1-2), 79-83. doi:10.1016/0022-0728(95)04028-m

Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1

Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7

Hasse, U., & Scholz, F. (2005). In situ AFM observation of the electrochemical reduction of a single silver sulphide crystal and the recrystallization of the resulting silver crystal. Electrochemistry Communications, 7(2), 173-176. doi:10.1016/j.elecom.2004.12.003

Babyak, C., & Smart, R. B. (2004). Electrochemical Detection of Trace Concentrations of Cadmium and Lead with a Boron-Doped Diamond Electrode: Effect of KCl and KNO3 Electrolytes, Interferences and Measurement in River Water. Electroanalysis, 16(3), 175-182. doi:10.1002/elan.200302794

Dragoe, D., Spătaru, N., Kawasaki, R., Manivannan, A., Spătaru, T., Tryk, D. A., & Fujishima, A. (2006). Detection of trace levels of Pb2+ in tap water at boron-doped diamond electrodes with anodic stripping voltammetry. Electrochimica Acta, 51(12), 2437-2441. doi:10.1016/j.electacta.2005.07.022

Sonthalia, P., McGaw, E., Show, Y., & Swain, G. M. (2004). Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode. Analytica Chimica Acta, 522(1), 35-44. doi:10.1016/j.aca.2004.06.071

Prado, C., Wilkins, S. J., Marken, F., & Compton, R. G. (2002). Simultaneous Electrochemical Detection and Determination of Lead and Copper at Boron-Doped Diamond Film Electrodes. Electroanalysis, 14(4), 262-272. doi:10.1002/1521-4109(200202)14:4<262::aid-elan262>3.0.co;2-d

El Tall, O., Jaffrezic-Renault, N., Sigaud, M., & Vittori, O. (2007). Anodic Stripping Voltammetry of Heavy Metals at Nanocrystalline Boron-Doped Diamond Electrode. Electroanalysis, 19(11), 1152-1159. doi:10.1002/elan.200603834

Saterlay, A. J., Wilkins, S. J., Goeting, C. H., Foord, J. S., Compton, R. G., & Marken, F. (2000). Sonoelectrochemistry at highly boron-doped diamond electrodes: silver oxide deposition and electrocatalysis in the presence of ultrasound. Journal of Solid State Electrochemistry, 4(7), 383-389. doi:10.1007/s100080000140

Lee, J. I., Howard, S. M., Kellar, J. J., Han, K. N., & Cross, W. (2001). Electrochemical interaction between silver and sulfur in sodium sulfide solutions. Metallurgical and Materials Transactions B, 32(5), 895-901. doi:10.1007/s11663-001-0075-x

Frueh, A. J. (1958). The Crystallography of Silver Sulfide, Ag2S. Zeitschrift für Kristallographie, 110(1-6), 136-144. doi:10.1524/zkri.1958.110.1-6.136

Wang, X., Zhang, S., & Zhang, Z. (2008). Synthesis of hexagonal nanosized silver sulfide at room temperature. Materials Chemistry and Physics, 107(1), 9-12. doi:10.1016/j.matchemphys.2007.07.015

Nicholson, R. S. (1965). Some Examples of the Numerical Solution of Nonlinear Integral Equations. Analytical Chemistry, 37(6), 667-671. doi:10.1021/ac60225a009

Mirčeski, V., Gulaboski, R., & Scholz, F. (2004). Square-wave thin-film voltammetry: influence of uncompensated resistance and charge transfer kinetics. Journal of Electroanalytical Chemistry, 566(2), 351-360. doi:10.1016/j.jelechem.2003.11.046

Grygar, T. (1998). Phenomenological kinetics of irreversible electrochemical dissolution of metal-oxide microparticles. Journal of Solid State Electrochemistry, 2(3), 127-136. doi:10.1007/s100080050077

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem