- -

Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa

Show full item record

Ruiz-Fuertes, J.; Errandonea, D.; Gomis Hilario, O.; Friedrich, A.; Manjón Herrera, FJ. (2014). Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa. Journal of Applied Physics. 115(4):43510-1-43510-5. doi:10.1063/1.4863236

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/49682

Files in this item

Item Metadata

Title: Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa
Author:
UPV Unit: Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
Abstract:
The multiferroic manganese tungstate (MnWO4) has been studied by high-pressure Raman spectroscopy at room temperature under quasi-hydrostatic conditions up to 39.3 GPa. The low-pressure wolframite phase undergoes a phase ...[+]
Subjects: High-pressures , Tungstates
Copyrigths: Reserva de todos los derechos
Source:
Journal of Applied Physics. (issn: 0021-8979 ) (eissn: 1089-7550 )
DOI: 10.1063/1.4863236
Publisher:
American Institute of Physics (AIP)
Publisher version: http://dx.doi.org/10.1063/1.4863236
Thanks:
This work has been supported by the Spanish government under Grant No. MAT2010-21270-C04-01/04, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045), by Generalitat Valenciana (GVA-ACOMP-2013-1012), and by the ...[+]
Type: Artículo

References

Mikhailik, V. B., Kraus, H., Kapustyanyk, V., Panasyuk, M., Prots, Y., Tsybulskyi, V., & Vasylechko, L. (2008). Structure, luminescence and scintillation properties of the MgWO4–MgMoO4system. Journal of Physics: Condensed Matter, 20(36), 365219. doi:10.1088/0953-8984/20/36/365219

Butler, M. A. (1977). Photoelectrolysis and physical properties of the semiconducting electrode WO2. Journal of Applied Physics, 48(5), 1914-1920. doi:10.1063/1.323948

Traversa, E. (1995). Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors and Actuators B: Chemical, 23(2-3), 135-156. doi:10.1016/0925-4005(94)01268-m [+]
Mikhailik, V. B., Kraus, H., Kapustyanyk, V., Panasyuk, M., Prots, Y., Tsybulskyi, V., & Vasylechko, L. (2008). Structure, luminescence and scintillation properties of the MgWO4–MgMoO4system. Journal of Physics: Condensed Matter, 20(36), 365219. doi:10.1088/0953-8984/20/36/365219

Butler, M. A. (1977). Photoelectrolysis and physical properties of the semiconducting electrode WO2. Journal of Applied Physics, 48(5), 1914-1920. doi:10.1063/1.323948

Traversa, E. (1995). Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors and Actuators B: Chemical, 23(2-3), 135-156. doi:10.1016/0925-4005(94)01268-m

Taniguchi, K., Abe, N., Takenobu, T., Iwasa, Y., & Arima, T. (2006). Ferroelectric Polarization Flop in a Frustrated MagnetMnWO4Induced by a Magnetic Field. Physical Review Letters, 97(9). doi:10.1103/physrevlett.97.097203

Errandonea, D., Manjón, F. J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Tu, C. Y. (2008). Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4. Physical Review B, 78(5). doi:10.1103/physrevb.78.054116

Ruiz-Fuertes, J., López-Moreno, S., López-Solano, J., Errandonea, D., Segura, A., Lacomba-Perales, R., … Tu, C. Y. (2012). Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Physical Review B, 86(12). doi:10.1103/physrevb.86.125202

Sleight, A. W. (1972). Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 2899-2902. doi:10.1107/s0567740872007186

Ruiz-Fuertes, J., López-Moreno, S., Errandonea, D., Pellicer-Porres, J., Lacomba-Perales, R., Segura, A., … González, J. (2010). High-pressure phase transitions and compressibility of wolframite-type tungstates. Journal of Applied Physics, 107(8), 083506. doi:10.1063/1.3380848

Ruiz-Fuertes, J., Errandonea, D., López-Moreno, S., González, J., Gomis, O., Vilaplana, R., … Nagornaya, L. L. (2011). High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Physical Review B, 83(21). doi:10.1103/physrevb.83.214112

Dai, R. C., Ding, X., Wang, Z. P., & Zhang, Z. M. (2013). Pressure and temperature dependence of Raman scattering of MnWO4. Chemical Physics Letters, 586, 76-80. doi:10.1016/j.cplett.2013.09.035

Macavei, J., & Schulz, H. (1993). The crystal structure of wolframite type tungstates at high pressure. Zeitschrift für Kristallographie - Crystalline Materials, 207(2). doi:10.1524/zkri.1993.207.part-2.193

Chaudhury, R. P., Yen, F., dela Cruz, C. R., Lorenz, B., Wang, Y. Q., Sun, Y. Y., & Chu, C. W. (2008). Thermal expansion and pressure effect in. Physica B: Condensed Matter, 403(5-9), 1428-1430. doi:10.1016/j.physb.2007.10.327

Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413

Iliev, M. N., Gospodinov, M. M., & Litvinchuk, A. P. (2009). Raman spectroscopy ofMnWO4. Physical Review B, 80(21). doi:10.1103/physrevb.80.212302

Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673

Mączka, M., Ptak, M., Pereira da Silva, K., Freire, P. T. C., & Hanuza, J. (2012). High-pressure Raman scattering and an anharmonicity study of multiferroic wolframite-type Mn0.97Fe0.03WO4. Journal of Physics: Condensed Matter, 24(34), 345403. doi:10.1088/0953-8984/24/34/345403

Errandonea, D., Gracia, L., Lacomba-Perales, R., Polian, A., & Chervin, J. C. (2013). Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence. Journal of Applied Physics, 113(12), 123510. doi:10.1063/1.4798374

Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121

Li, H., Zhou, S., & Zhang, S. (2007). The relationship between the thermal expansions and structures of ABO4 oxides. Journal of Solid State Chemistry, 180(2), 589-595. doi:10.1016/j.jssc.2006.11.023

N. W. Ashkroft and N. D. Mermin, Solid State Physics (W. B. Saunders Company, Philadelphia, 1976), Chap. 25, p. 493.

Hofmeister, A. M., & Mao, H. -k. (2002). Redefinition of the mode Gruneisen parameter for polyatomic substances and thermodynamic implications. Proceedings of the National Academy of Sciences, 99(2), 559-564. doi:10.1073/pnas.241631698

Lacomba-Perales, R., Martínez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., & Morard, G. (2009). High-pressure and high-temperature X-ray diffraction studies of scheelite BaWO4. High Pressure Research, 29(1), 76-82. doi:10.1080/08957950802417792

[-]

This item appears in the following Collection(s)

Show full item record