- -

Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Fuertes, J. es_ES
dc.contributor.author Errandonea, D. es_ES
dc.contributor.author Gomis Hilario, Oscar es_ES
dc.contributor.author Friedrich, A. es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.date.accessioned 2015-05-05T09:38:14Z
dc.date.available 2015-05-05T09:38:14Z
dc.date.issued 2014-01-28
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/49682
dc.description.abstract The multiferroic manganese tungstate (MnWO4) has been studied by high-pressure Raman spectroscopy at room temperature under quasi-hydrostatic conditions up to 39.3 GPa. The low-pressure wolframite phase undergoes a phase transition at 25.7 GPa, a pressure around 8 GPa higher than that found in previous works, which used less hydrostatic pressure-transmitting media. The pressure dependence of the Raman active modes of both the low-and high-pressure phases is reported and discussed comparing with the results available in the literature for MnWO4 and related wolframites. A gradual pressure-induced phase transition from the low-to the high-pressure phase is suggested on the basis of the linear intensity decrease of the Raman mode with the lowest frequency up to the end of the phase transition. (C) 2014 AIP Publishing LLC. es_ES
dc.description.sponsorship This work has been supported by the Spanish government under Grant No. MAT2010-21270-C04-01/04, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045), by Generalitat Valenciana (GVA-ACOMP-2013-1012), and by the Vicerrectorado de Investigacion y Desarrollo of the Universidad Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). We thank Professor Gospodinov, Institute of Scintillating Materials in Ukraine, for providing us high-quality MnWO<INF>4</INF> single crystals. J.R.-F. thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship. A. F. acknowledges support from the Germany Research foundation within the priority program SPP1236 (Project No. FR-2491/2-1). The use of the SPP1236 central facility in Frankfurt is acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject High-pressures es_ES
dc.subject Tungstates es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4863236
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//FR2491%2F2-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11-UPV2011-0914/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-UPV2011-0966/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//SPP1236/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Ruiz-Fuertes, J.; Errandonea, D.; Gomis Hilario, O.; Friedrich, A.; Manjón Herrera, FJ. (2014). Room-temperature vibrational properties of multiferroic MnWO4 under quasi-hydrostatic compression up to 39 GPa. Journal of Applied Physics. 115(4):43510-1-43510-5. https://doi.org/10.1063/1.4863236 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4863236 es_ES
dc.description.upvformatpinicio 43510-1 es_ES
dc.description.upvformatpfin 43510-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 254090
dc.identifier.eissn 1089-7550
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Alexander von Humboldt Foundation es_ES
dc.description.references Mikhailik, V. B., Kraus, H., Kapustyanyk, V., Panasyuk, M., Prots, Y., Tsybulskyi, V., & Vasylechko, L. (2008). Structure, luminescence and scintillation properties of the MgWO4–MgMoO4system. Journal of Physics: Condensed Matter, 20(36), 365219. doi:10.1088/0953-8984/20/36/365219 es_ES
dc.description.references Butler, M. A. (1977). Photoelectrolysis and physical properties of the semiconducting electrode WO2. Journal of Applied Physics, 48(5), 1914-1920. doi:10.1063/1.323948 es_ES
dc.description.references Traversa, E. (1995). Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors and Actuators B: Chemical, 23(2-3), 135-156. doi:10.1016/0925-4005(94)01268-m es_ES
dc.description.references Taniguchi, K., Abe, N., Takenobu, T., Iwasa, Y., & Arima, T. (2006). Ferroelectric Polarization Flop in a Frustrated MagnetMnWO4Induced by a Magnetic Field. Physical Review Letters, 97(9). doi:10.1103/physrevlett.97.097203 es_ES
dc.description.references Errandonea, D., Manjón, F. J., Garro, N., Rodríguez-Hernández, P., Radescu, S., Mujica, A., … Tu, C. Y. (2008). Combined Raman scattering andab initioinvestigation of pressure-induced structural phase transitions in the scintillatorZnWO4. Physical Review B, 78(5). doi:10.1103/physrevb.78.054116 es_ES
dc.description.references Ruiz-Fuertes, J., López-Moreno, S., López-Solano, J., Errandonea, D., Segura, A., Lacomba-Perales, R., … Tu, C. Y. (2012). Pressure effects on the electronic and optical properties ofAWO4wolframites (A =Cd, Mg, Mn, and Zn): The distinctive behavior of multiferroic MnWO4. Physical Review B, 86(12). doi:10.1103/physrevb.86.125202 es_ES
dc.description.references Sleight, A. W. (1972). Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 28(10), 2899-2902. doi:10.1107/s0567740872007186 es_ES
dc.description.references Ruiz-Fuertes, J., López-Moreno, S., Errandonea, D., Pellicer-Porres, J., Lacomba-Perales, R., Segura, A., … González, J. (2010). High-pressure phase transitions and compressibility of wolframite-type tungstates. Journal of Applied Physics, 107(8), 083506. doi:10.1063/1.3380848 es_ES
dc.description.references Ruiz-Fuertes, J., Errandonea, D., López-Moreno, S., González, J., Gomis, O., Vilaplana, R., … Nagornaya, L. L. (2011). High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Physical Review B, 83(21). doi:10.1103/physrevb.83.214112 es_ES
dc.description.references Dai, R. C., Ding, X., Wang, Z. P., & Zhang, Z. M. (2013). Pressure and temperature dependence of Raman scattering of MnWO4. Chemical Physics Letters, 586, 76-80. doi:10.1016/j.cplett.2013.09.035 es_ES
dc.description.references Macavei, J., & Schulz, H. (1993). The crystal structure of wolframite type tungstates at high pressure. Zeitschrift für Kristallographie - Crystalline Materials, 207(2). doi:10.1524/zkri.1993.207.part-2.193 es_ES
dc.description.references Chaudhury, R. P., Yen, F., dela Cruz, C. R., Lorenz, B., Wang, Y. Q., Sun, Y. Y., & Chu, C. W. (2008). Thermal expansion and pressure effect in. Physica B: Condensed Matter, 403(5-9), 1428-1430. doi:10.1016/j.physb.2007.10.327 es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Iliev, M. N., Gospodinov, M. M., & Litvinchuk, A. P. (2009). Raman spectroscopy ofMnWO4. Physical Review B, 80(21). doi:10.1103/physrevb.80.212302 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Mączka, M., Ptak, M., Pereira da Silva, K., Freire, P. T. C., & Hanuza, J. (2012). High-pressure Raman scattering and an anharmonicity study of multiferroic wolframite-type Mn0.97Fe0.03WO4. Journal of Physics: Condensed Matter, 24(34), 345403. doi:10.1088/0953-8984/24/34/345403 es_ES
dc.description.references Errandonea, D., Gracia, L., Lacomba-Perales, R., Polian, A., & Chervin, J. C. (2013). Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence. Journal of Applied Physics, 113(12), 123510. doi:10.1063/1.4798374 es_ES
dc.description.references Gomis, O., Sans, J. A., Lacomba-Perales, R., Errandonea, D., Meng, Y., Chervin, J. C., & Polian, A. (2012). Complex high-pressure polymorphism of barium tungstate. Physical Review B, 86(5). doi:10.1103/physrevb.86.054121 es_ES
dc.description.references Li, H., Zhou, S., & Zhang, S. (2007). The relationship between the thermal expansions and structures of ABO4 oxides. Journal of Solid State Chemistry, 180(2), 589-595. doi:10.1016/j.jssc.2006.11.023 es_ES
dc.description.references N. W. Ashkroft and N. D. Mermin, Solid State Physics (W. B. Saunders Company, Philadelphia, 1976), Chap. 25, p. 493. es_ES
dc.description.references Hofmeister, A. M., & Mao, H. -k. (2002). Redefinition of the mode Gruneisen parameter for polyatomic substances and thermodynamic implications. Proceedings of the National Academy of Sciences, 99(2), 559-564. doi:10.1073/pnas.241631698 es_ES
dc.description.references Lacomba-Perales, R., Martínez-García, D., Errandonea, D., Le Godec, Y., Philippe, J., & Morard, G. (2009). High-pressure and high-temperature X-ray diffraction studies of scheelite BaWO4. High Pressure Research, 29(1), 76-82. doi:10.1080/08957950802417792 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem