- -

F-nodec spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

F-nodec spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dridi, Lobna es_ES
dc.contributor.author Mhemdi, Abdelwaheb es_ES
dc.contributor.author Turki, Tarek es_ES
dc.date.accessioned 2015-05-13T12:26:14Z
dc.date.available 2015-05-13T12:26:14Z
dc.date.issued 2015-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/50175
dc.description.abstract [EN] Following Van Douwen, a topological space is said to be nodec if it satisfies one of the following equivalent conditions: (i) every nowhere dense subset of X, is closed; (ii) every nowhere dense subset of X, is closed discrete; (iii) every subset containing a dense open subset is open. This paper deals with a characterization of topological spaces X such that F(X) is a nodec space for some covariant functor F from the category Top to itself. T0 , ρ and FH functors are completely studied. Secondly, we characterize maps f given by a flow (X, f ) in the category Set such that (X, P(f )) is nodec (resp., T0-nodec), where P(f ) is a topology on X whose closed sets are precisely f-invariant sets. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Categories es_ES
dc.subject Functors es_ES
dc.subject Nodec spaces es_ES
dc.subject Primal Space es_ES
dc.title F-nodec spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2015-05-13T09:48:03Z
dc.identifier.doi 10.4995/agt.2015.3141
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Dridi, L.; Mhemdi, A.; Turki, T. (2015). F-nodec spaces. Applied General Topology. 16(1):53-64. https://doi.org/10.4995/agt.2015.3141 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2015.3141 es_ES
dc.description.upvformatpinicio 53 es_ES
dc.description.upvformatpfin 64 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references Belaid, K., Echi, O., & Lazaar, S. (2004). T(α,β)-spaces and the Wallman compactification. International Journal of Mathematics and Mathematical Sciences, 2004(68), 3717-3735. doi:10.1155/s0161171204404050 es_ES
dc.description.references O. Echi and S. Lazaar, Reflective subcategories, Tychonoff spaces, and spectral spaces, Top. Proc. 34 (2009), 307-319. es_ES
dc.description.references J. F. Kennisson, The cyclic spectrum of a boolean flow, Theory Appl. Categ. 10 (2002), 392-409. es_ES
dc.description.references J. F. Kennisson, Spectra of finitely generated boolean flows, Theory Appl. Categ. 16 (2006), 434-459. es_ES
dc.description.references J. W. Tukey, Convergence and uniformity in topology, Annals of Mathematics Studies, no. 2. Princeton University Press, (1940) Princeton, N. J. es_ES
dc.description.references R. C. Walker, The Stone-Cech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. New York-Berlin: Springer-Verlag, (1974). es_ES
dc.description.references G. Bezhanishvili, L. Esakia and D. Gabelaia, Modal Logics of submaximal and nodec spaces, collection of Essays Dedicated to Dick De Jongh on occasion of his 65th. Birthday, J. van Benthem, F. Veltman, A. Troelstra, A. Visser, editors. (2004), pp. 1-13. es_ES
dc.description.references S. Lazaar, On functionally Hausdorff Spaces, Missouri J. Math. Sci. 1 (2013), 88-97. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem