Mostrar el registro sencillo del ítem
dc.contributor.author | Dridi, Lobna | es_ES |
dc.contributor.author | Mhemdi, Abdelwaheb | es_ES |
dc.contributor.author | Turki, Tarek | es_ES |
dc.date.accessioned | 2015-05-13T12:26:14Z | |
dc.date.available | 2015-05-13T12:26:14Z | |
dc.date.issued | 2015-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/50175 | |
dc.description.abstract | [EN] Following Van Douwen, a topological space is said to be nodec if it satisfies one of the following equivalent conditions: (i) every nowhere dense subset of X, is closed; (ii) every nowhere dense subset of X, is closed discrete; (iii) every subset containing a dense open subset is open. This paper deals with a characterization of topological spaces X such that F(X) is a nodec space for some covariant functor F from the category Top to itself. T0 , ρ and FH functors are completely studied. Secondly, we characterize maps f given by a flow (X, f ) in the category Set such that (X, P(f )) is nodec (resp., T0-nodec), where P(f ) is a topology on X whose closed sets are precisely f-invariant sets. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Categories | es_ES |
dc.subject | Functors | es_ES |
dc.subject | Nodec spaces | es_ES |
dc.subject | Primal Space | es_ES |
dc.title | F-nodec spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2015-05-13T09:48:03Z | |
dc.identifier.doi | 10.4995/agt.2015.3141 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Dridi, L.; Mhemdi, A.; Turki, T. (2015). F-nodec spaces. Applied General Topology. 16(1):53-64. https://doi.org/10.4995/agt.2015.3141 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2015.3141 | es_ES |
dc.description.upvformatpinicio | 53 | es_ES |
dc.description.upvformatpfin | 64 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Belaid, K., Echi, O., & Lazaar, S. (2004). T(α,β)-spaces and the Wallman compactification. International Journal of Mathematics and Mathematical Sciences, 2004(68), 3717-3735. doi:10.1155/s0161171204404050 | es_ES |
dc.description.references | O. Echi and S. Lazaar, Reflective subcategories, Tychonoff spaces, and spectral spaces, Top. Proc. 34 (2009), 307-319. | es_ES |
dc.description.references | J. F. Kennisson, The cyclic spectrum of a boolean flow, Theory Appl. Categ. 10 (2002), 392-409. | es_ES |
dc.description.references | J. F. Kennisson, Spectra of finitely generated boolean flows, Theory Appl. Categ. 16 (2006), 434-459. | es_ES |
dc.description.references | J. W. Tukey, Convergence and uniformity in topology, Annals of Mathematics Studies, no. 2. Princeton University Press, (1940) Princeton, N. J. | es_ES |
dc.description.references | R. C. Walker, The Stone-Cech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. New York-Berlin: Springer-Verlag, (1974). | es_ES |
dc.description.references | G. Bezhanishvili, L. Esakia and D. Gabelaia, Modal Logics of submaximal and nodec spaces, collection of Essays Dedicated to Dick De Jongh on occasion of his 65th. Birthday, J. van Benthem, F. Veltman, A. Troelstra, A. Visser, editors. (2004), pp. 1-13. | es_ES |
dc.description.references | S. Lazaar, On functionally Hausdorff Spaces, Missouri J. Math. Sci. 1 (2013), 88-97. | es_ES |