- -

On C-embedded subspaces of the Sorgenfrey plane

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On C-embedded subspaces of the Sorgenfrey plane

Show full item record

Karlova, O. (2015). On C-embedded subspaces of the Sorgenfrey plane. Applied General Topology. 16(1):65-74. doi:10.4995/agt.2015.3161

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50176

Files in this item

Item Metadata

Title: On C-embedded subspaces of the Sorgenfrey plane
Author: Karlova, Olena
Issued date:
Abstract:
[EN] We prove that every C∗ -embedded subset of S2 is a hereditarily Baire subspace of R2. We also show that for a subspace E ⊆ {(x, −x) : x ∈ R} of the Sorgenfrey plane S2 the following conditions are equivalent: (i) ...[+]
Subjects: $C^*$-embedded , $C$-embedded , The Sorgenfrey plane
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2015.3161
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2015.3161
Type: Artículo

References

Blair, R. L., & Hager, A. W. (1974). Extensions of zero-sets and of real-valued functions. Mathematische Zeitschrift, 136(1), 41-52. doi:10.1007/bf01189255

G.Debs, Espaces héréditairement de Baire, Fund. Math. 129, no. 3 (1988), 199-206.

R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989). [+]
Blair, R. L., & Hager, A. W. (1974). Extensions of zero-sets and of real-valued functions. Mathematische Zeitschrift, 136(1), 41-52. doi:10.1007/bf01189255

G.Debs, Espaces héréditairement de Baire, Fund. Math. 129, no. 3 (1988), 199-206.

R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989).

R. Heath and E. Michael, A property of the Sorgenfrey line, Comp. Math. 23, no. 2 (1971), 185-188.

O. Karlova, On $alpha$-embedded sets and extension of mappings, Comment. Math. Univ. Carolin. 54, no. 3 (2013), 377-396.

Saint-Raymond, J. (1983). Jeux topologiques et espaces de Namioka. Proceedings of the American Mathematical Society, 87(3), 499-499. doi:10.1090/s0002-9939-1983-0684646-1

W.Sierpinski, Sur une propriete topologique des ensembles denombrables denses en soi, Fund. Math. 1 (1920), 11-16.

J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 167-174.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record