- -

On C-embedded subspaces of the Sorgenfrey plane

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On C-embedded subspaces of the Sorgenfrey plane

Show simple item record

Files in this item

dc.contributor.author Karlova, Olena es_ES
dc.date.accessioned 2015-05-13T12:28:21Z
dc.date.available 2015-05-13T12:28:21Z
dc.date.issued 2015-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/50176
dc.description.abstract [EN] We prove that every C∗ -embedded subset of S2 is a hereditarily Baire subspace of R2. We also show that for a subspace E ⊆ {(x, −x) : x ∈ R} of the Sorgenfrey plane S2 the following conditions are equivalent: (i) E is C-embedded in S2; (ii) E is C∗-embedded in S2; (iii) E is a countable Gδ -subspace of R2 and (iv) E is a countable functionally closed subspace of S2. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject $C^*$-embedded es_ES
dc.subject $C$-embedded es_ES
dc.subject The Sorgenfrey plane es_ES
dc.title On C-embedded subspaces of the Sorgenfrey plane es_ES
dc.type Artículo es_ES
dc.date.updated 2015-05-13T09:48:08Z
dc.identifier.doi 10.4995/agt.2015.3161
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Karlova, O. (2015). On C-embedded subspaces of the Sorgenfrey plane. Applied General Topology. 16(1):65-74. doi:10.4995/agt.2015.3161 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2015.3161 es_ES
dc.description.upvformatpinicio 65 es_ES
dc.description.upvformatpfin 74 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references Blair, R. L., & Hager, A. W. (1974). Extensions of zero-sets and of real-valued functions. Mathematische Zeitschrift, 136(1), 41-52. doi:10.1007/bf01189255 es_ES
dc.description.references G.Debs, Espaces héréditairement de Baire, Fund. Math. 129, no. 3 (1988), 199-206. es_ES
dc.description.references R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989). es_ES
dc.description.references R. Heath and E. Michael, A property of the Sorgenfrey line, Comp. Math. 23, no. 2 (1971), 185-188. es_ES
dc.description.references O. Karlova, On $alpha$-embedded sets and extension of mappings, Comment. Math. Univ. Carolin. 54, no. 3 (2013), 377-396. es_ES
dc.description.references Saint-Raymond, J. (1983). Jeux topologiques et espaces de Namioka. Proceedings of the American Mathematical Society, 87(3), 499-499. doi:10.1090/s0002-9939-1983-0684646-1 es_ES
dc.description.references W.Sierpinski, Sur une propriete topologique des ensembles denombrables denses en soi, Fund. Math. 1 (1920), 11-16. es_ES
dc.description.references J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 167-174. es_ES


This item appears in the following Collection(s)

Show simple item record