Mostrar el registro sencillo del ítem
dc.contributor.author | Karlova, Olena | es_ES |
dc.date.accessioned | 2015-05-13T12:28:21Z | |
dc.date.available | 2015-05-13T12:28:21Z | |
dc.date.issued | 2015-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/50176 | |
dc.description.abstract | [EN] We prove that every C∗ -embedded subset of S2 is a hereditarily Baire subspace of R2. We also show that for a subspace E ⊆ {(x, −x) : x ∈ R} of the Sorgenfrey plane S2 the following conditions are equivalent: (i) E is C-embedded in S2; (ii) E is C∗-embedded in S2; (iii) E is a countable Gδ -subspace of R2 and (iv) E is a countable functionally closed subspace of S2. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | $C^*$-embedded | es_ES |
dc.subject | $C$-embedded | es_ES |
dc.subject | The Sorgenfrey plane | es_ES |
dc.title | On C-embedded subspaces of the Sorgenfrey plane | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2015-05-13T09:48:08Z | |
dc.identifier.doi | 10.4995/agt.2015.3161 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Karlova, O. (2015). On C-embedded subspaces of the Sorgenfrey plane. Applied General Topology. 16(1):65-74. https://doi.org/10.4995/agt.2015.3161 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2015.3161 | es_ES |
dc.description.upvformatpinicio | 65 | es_ES |
dc.description.upvformatpfin | 74 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Blair, R. L., & Hager, A. W. (1974). Extensions of zero-sets and of real-valued functions. Mathematische Zeitschrift, 136(1), 41-52. doi:10.1007/bf01189255 | es_ES |
dc.description.references | G.Debs, Espaces héréditairement de Baire, Fund. Math. 129, no. 3 (1988), 199-206. | es_ES |
dc.description.references | R. Engelking, General Topology. Revised and completed edition. Heldermann Verlag, Berlin (1989). | es_ES |
dc.description.references | R. Heath and E. Michael, A property of the Sorgenfrey line, Comp. Math. 23, no. 2 (1971), 185-188. | es_ES |
dc.description.references | O. Karlova, On $alpha$-embedded sets and extension of mappings, Comment. Math. Univ. Carolin. 54, no. 3 (2013), 377-396. | es_ES |
dc.description.references | Saint-Raymond, J. (1983). Jeux topologiques et espaces de Namioka. Proceedings of the American Mathematical Society, 87(3), 499-499. doi:10.1090/s0002-9939-1983-0684646-1 | es_ES |
dc.description.references | W.Sierpinski, Sur une propriete topologique des ensembles denombrables denses en soi, Fund. Math. 1 (1920), 11-16. | es_ES |
dc.description.references | J. Terasawa, On the zero-dimensionality of some non-normal product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11 (1972), 167-174. | es_ES |