- -

When is a space Menger at infinity?

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

When is a space Menger at infinity?

Show full item record

Aurichi, LF.; Bella, A. (2015). When is a space Menger at infinity?. Applied General Topology. 16(1):75-80. https://doi.org/10.4995/agt.2015.3244

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50177

Files in this item

Item Metadata

Title: When is a space Menger at infinity?
Author: Aurichi, Leandro Fiorini Bella, Angelo
Issued date:
Abstract:
[EN] We try to characterize those Tychonoff spaces X such that $\beta X\setminus X$ has the Menger property.
Subjects: Menger at infinity
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2015.3244
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2015.3244
Project ID:
info:eu-repo/grantAgreement/FAPESP//2013%2F05469-7/
Thanks:
The first author was partially supported by FAPESP (2013/05469-7) and by GNSAGA.
Type: Artículo

References

Aurichi, L. F., & Bella, A. (2015). On a game theoretic cardinality bound. Topology and its Applications, 192, 2-8. doi:10.1016/j.topol.2015.05.068

G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.

E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733. [+]
Aurichi, L. F., & Bella, A. (2015). On a game theoretic cardinality bound. Topology and its Applications, 192, 2-8. doi:10.1016/j.topol.2015.05.068

G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206.

E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733.

A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33.

Telgársky, R. (1984). On games of Topsoe. MATHEMATICA SCANDINAVICA, 54, 170. doi:10.7146/math.scand.a-12050

F. Topsoe, Topological games and Cech-completeness, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613-630

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record