- -

When is a space Menger at infinity?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

When is a space Menger at infinity?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aurichi, Leandro Fiorini es_ES
dc.contributor.author Bella, Angelo es_ES
dc.date.accessioned 2015-05-13T12:30:34Z
dc.date.available 2015-05-13T12:30:34Z
dc.date.issued 2015-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/50177
dc.description.abstract [EN] We try to characterize those Tychonoff spaces X such that $\beta X\setminus X$ has the Menger property. es_ES
dc.description.sponsorship The first author was partially supported by FAPESP (2013/05469-7) and by GNSAGA.
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Menger at infinity es_ES
dc.title When is a space Menger at infinity? es_ES
dc.type Artículo es_ES
dc.date.updated 2015-05-13T09:48:17Z
dc.identifier.doi 10.4995/agt.2015.3244
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2013%2F05469-7/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Aurichi, LF.; Bella, A. (2015). When is a space Menger at infinity?. Applied General Topology. 16(1):75-80. https://doi.org/10.4995/agt.2015.3244 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2015.3244 es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 80 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.contributor.funder Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.description.references Aurichi, L. F., & Bella, A. (2015). On a game theoretic cardinality bound. Topology and its Applications, 192, 2-8. doi:10.1016/j.topol.2015.05.068 es_ES
dc.description.references G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), 199-206. es_ES
dc.description.references E. Michael, Complete spaces and triquotient maps, Illinois J. Math. 21 (1977), 716-733. es_ES
dc.description.references A. Miller and D. Fremlin, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17-33. es_ES
dc.description.references Telgársky, R. (1984). On games of Topsoe. MATHEMATICA SCANDINAVICA, 54, 170. doi:10.7146/math.scand.a-12050 es_ES
dc.description.references F. Topsoe, Topological games and Cech-completeness, Proceedings of the V Prague Topological Symposium, 1981, J. Novak ed. (1982), 613-630 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem