- -

Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

Show full item record

Calderón García, PA.; Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology. (23):1-15. https://doi.org/10.1088/0957-0233/23/6/065604

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50308

Files in this item

Item Metadata

Title: Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement
Author: Calderón García, Pedro Antonio Glisic, B.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
Abstract:
In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical ...[+]
Subjects: Accuracy of strain measurement , Concrete structures , Embedded fiber optic sensors , Geotechnical applications , Long-gauge sensors , Air pockets , Critical parameter , Equivalent Young's modulus , Gauge length , Geometrical property , Geotechnical application , Geotechnical material , Host materials , Local defects , Parametric study , Plastic behavior , Practical recommendation , Strain fields , Strain sensors , Strain transfer , Young's Modulus , Concrete construction , Cracks , Elastic moduli , Elasticity , Finite element method , Gages , Numerical models , Sound insulating materials , Strain measurement , Sensors
Copyrigths: Reserva de todos los derechos
Source:
Measurement Science and Technology. (issn: 0957-0233 )
DOI: 10.1088/0957-0233/23/6/065604
Publisher:
IOP Publishing: Hybrid Open Access
Publisher version: http://dx.doi.org/10.1088/0957-0233/23/6/065604
Project ID:
Spanish Ministry of Education [O.M. EDU/1456/2010
info:eu-repo/grantAgreement/ME//PR2010-0293/ES/PR2010-0293/
Thanks:
The authors would like to thank the Spanish Ministry of Education, with support received under the National Program for Mobility of Researchers (O.M. EDU/1456/2010, ref. PR2010-0293) which enabled the joint work that made ...[+]
Type: Artículo

References

Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819

Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18(8), 879-889. doi:10.1177/1045389x06075760

Li, H.-N., Zhou, G.-D., Ren, L., & Li, D.-S. (2009). Strain Transfer Coefficient Analyses for Embedded Fiber Bragg Grating Sensors in Different Host Materials. Journal of Engineering Mechanics, 135(12), 1343-1353. doi:10.1061/(asce)0733-9399(2009)135:12(1343) [+]
Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819

Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18(8), 879-889. doi:10.1177/1045389x06075760

Li, H.-N., Zhou, G.-D., Ren, L., & Li, D.-S. (2009). Strain Transfer Coefficient Analyses for Embedded Fiber Bragg Grating Sensors in Different Host Materials. Journal of Engineering Mechanics, 135(12), 1343-1353. doi:10.1061/(asce)0733-9399(2009)135:12(1343)

Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012

Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43(2), 157-163. doi:10.1016/j.measurement.2009.08.010

Azenha, M., Faria, R., & Ferreira, D. (2009). Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cement and Concrete Composites, 31(6), 369-378. doi:10.1016/j.cemconcomp.2009.03.004

Glisic, B. (2011). Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams. Measurement Science and Technology, 22(3), 035206. doi:10.1088/0957-0233/22/3/035206

Leng, J. S., Winter, D., Barnes, R. A., Mays, G. C., & Fernando, G. F. (2006). Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart Materials and Structures, 15(2), 302-308. doi:10.1088/0964-1726/15/2/009

Calderón, P. A., Adam, J. M., Ivorra, S., Pallarés, F. J., & Giménez, E. (2009). Design strength of axially loaded RC columns strengthened by steel caging. Materials & Design, 30(10), 4069-4080. doi:10.1016/j.matdes.2009.05.014

Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265-2276. doi:10.1016/j.conbuildmat.2008.11.014

Adam, J. M., Ivorra, S., Pallares, F. J., Jiménez, E., & Calderón, P. A. (2008). Column–joint assembly in RC columns strengthened by steel caging. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 161(6), 337-348. doi:10.1680/stbu.2008.161.6.337

Adam, J. M., Ivorra, S., Pallares, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel cages. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 162(3), 199-208. doi:10.1680/stbu.2009.162.3.199

Johansson, M., & Gylltoft, K. (2001). Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 1(4), 393-410. doi:10.12989/scs.2001.1.4.393

Johansson, M., & Gylltoft, K. (2002). Mechanical Behavior of Circular Steel–Concrete Composite Stub Columns. Journal of Structural Engineering, 128(8), 1073-1081. doi:10.1061/(asce)0733-9445(2002)128:8(1073)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record