- -

Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calderón García, Pedro Antonio es_ES
dc.contributor.author Glisic, B. es_ES
dc.date.accessioned 2015-05-15T15:34:11Z
dc.date.available 2015-05-15T15:34:11Z
dc.date.issued 2012-04-30
dc.identifier.issn 0957-0233
dc.identifier.uri http://hdl.handle.net/10251/50308
dc.description.abstract In many civil and geotechnical applications it is of interest to monitor the strain deep inside the structure; consequently, it is necessary to embed the sensors into the structure's material. Construction and geotechnical materials, such as concrete and soil, can be affected by local defects, e.g. cracks, air pockets and inclusions. To monitor these materials at a structural level it is necessary to use long-gauge sensors. As the sensor has to be embedded in the host material, its presence causes perturbation of the strain field and influences the accuracy of the strain measurement. The aim of this research was to identify the critical parameters that influence the accuracy of the strain measurement, to study how these parameters affect the accuracy, and to give recommendations for sensor users. The study was based on finite element analysis and all involved materials were assumed to have the MöhrCoulomb elastic, perfectly plastic behavior. A suitability of the numerical model for the analysis was verified using the experimental results of two cases reported in the literature and one on-site application. The study revealed that the most important parameters that influence the accuracy of the strain measurement are the goodness of interaction (strain transfer) between the host material and the anchor pieces of the sensor, the ratio between equivalent Young's modulus of the sensor and the Young's modulus of the host material, the radius of the anchor piece and the gauge length. The numerical model and parametric study are presented in detail along with practical recommendations. © 2012 IOP Publishing Ltd. es_ES
dc.description.sponsorship The authors would like to thank the Spanish Ministry of Education, with support received under the National Program for Mobility of Researchers (O.M. EDU/1456/2010, ref. PR2010-0293) which enabled the joint work that made this study possible. The Streicker Bridge project was realized with help of Turner Construction Co., HNTB, AG Construction Corp., Vollers Excavating & Constr., SMARTEC SA, Micron Optics, Princeton Facilities, and staff and students of CEE department of Princeton University. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Hybrid Open Access es_ES
dc.relation.ispartof Measurement Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Accuracy of strain measurement es_ES
dc.subject Concrete structures es_ES
dc.subject Embedded fiber optic sensors es_ES
dc.subject Geotechnical applications es_ES
dc.subject Long-gauge sensors es_ES
dc.subject Air pockets es_ES
dc.subject Critical parameter es_ES
dc.subject Equivalent Young's modulus es_ES
dc.subject Gauge length es_ES
dc.subject Geometrical property es_ES
dc.subject Geotechnical application es_ES
dc.subject Geotechnical material es_ES
dc.subject Host materials es_ES
dc.subject Local defects es_ES
dc.subject Parametric study es_ES
dc.subject Plastic behavior es_ES
dc.subject Practical recommendation es_ES
dc.subject Strain fields es_ES
dc.subject Strain sensors es_ES
dc.subject Strain transfer es_ES
dc.subject Young's Modulus es_ES
dc.subject Concrete construction es_ES
dc.subject Cracks es_ES
dc.subject Elastic moduli es_ES
dc.subject Elasticity es_ES
dc.subject Finite element method es_ES
dc.subject Gages es_ES
dc.subject Numerical models es_ES
dc.subject Sound insulating materials es_ES
dc.subject Strain measurement es_ES
dc.subject Sensors es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0957-0233/23/6/065604
dc.relation.projectID info:eu-repo/grantAgreement/ME//PR2010-0293/ES/PR2010-0293/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Calderón García, PA.; Glisic, B. (2012). Influence of mechanical and geometrical properties of embedded long-gauge strain sensors on the accuracy of strain measurement. Measurement Science and Technology. (23):1-15. https://doi.org/10.1088/0957-0233/23/6/065604 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/0957-0233/23/6/065604 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 23 es_ES
dc.relation.senia 222739
dc.contributor.funder Ministerio de Educación es_ES
dc.description.references Glišić, B., & Inaudi, D. (2007). Fibre Optic Methods for Structural Health Monitoring. doi:10.1002/9780470517819 es_ES
dc.description.references Ansari, F. (2007). Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 18(8), 879-889. doi:10.1177/1045389x06075760 es_ES
dc.description.references Li, H.-N., Zhou, G.-D., Ren, L., & Li, D.-S. (2009). Strain Transfer Coefficient Analyses for Embedded Fiber Bragg Grating Sensors in Different Host Materials. Journal of Engineering Mechanics, 135(12), 1343-1353. doi:10.1061/(asce)0733-9399(2009)135:12(1343) es_ES
dc.description.references Torres, B., Payá-Zaforteza, I., Calderón, P. A., & Adam, J. M. (2011). Analysis of the strain transfer in a new FBG sensor for Structural Health Monitoring. Engineering Structures, 33(2), 539-548. doi:10.1016/j.engstruct.2010.11.012 es_ES
dc.description.references Kesavan, K., Ravisankar, K., Parivallal, S., Sreeshylam, P., & Sridhar, S. (2010). Experimental studies on fiber optic sensors embedded in concrete. Measurement, 43(2), 157-163. doi:10.1016/j.measurement.2009.08.010 es_ES
dc.description.references Azenha, M., Faria, R., & Ferreira, D. (2009). Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cement and Concrete Composites, 31(6), 369-378. doi:10.1016/j.cemconcomp.2009.03.004 es_ES
dc.description.references Glisic, B. (2011). Influence of the gauge length on the accuracy of long-gauge sensors employed in monitoring of prismatic beams. Measurement Science and Technology, 22(3), 035206. doi:10.1088/0957-0233/22/3/035206 es_ES
dc.description.references Leng, J. S., Winter, D., Barnes, R. A., Mays, G. C., & Fernando, G. F. (2006). Structural health monitoring of concrete cylinders using protected fibre optic sensors. Smart Materials and Structures, 15(2), 302-308. doi:10.1088/0964-1726/15/2/009 es_ES
dc.description.references Calderón, P. A., Adam, J. M., Ivorra, S., Pallarés, F. J., & Giménez, E. (2009). Design strength of axially loaded RC columns strengthened by steel caging. Materials & Design, 30(10), 4069-4080. doi:10.1016/j.matdes.2009.05.014 es_ES
dc.description.references Adam, J. M., Ivorra, S., Pallarés, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel caging. Finite element modelling. Construction and Building Materials, 23(6), 2265-2276. doi:10.1016/j.conbuildmat.2008.11.014 es_ES
dc.description.references Adam, J. M., Ivorra, S., Pallares, F. J., Jiménez, E., & Calderón, P. A. (2008). Column–joint assembly in RC columns strengthened by steel caging. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 161(6), 337-348. doi:10.1680/stbu.2008.161.6.337 es_ES
dc.description.references Adam, J. M., Ivorra, S., Pallares, F. J., Giménez, E., & Calderón, P. A. (2009). Axially loaded RC columns strengthened by steel cages. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 162(3), 199-208. doi:10.1680/stbu.2009.162.3.199 es_ES
dc.description.references Johansson, M., & Gylltoft, K. (2001). Structural behavior of slender circular steel-concrete composite columns under various means of load application. Steel and Composite Structures, 1(4), 393-410. doi:10.12989/scs.2001.1.4.393 es_ES
dc.description.references Johansson, M., & Gylltoft, K. (2002). Mechanical Behavior of Circular Steel–Concrete Composite Stub Columns. Journal of Structural Engineering, 128(8), 1073-1081. doi:10.1061/(asce)0733-9445(2002)128:8(1073) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem