Amini, S., & Jochem, R. (2011). A Conceptual Model Based on the Fuzzy Set Theory to Measure and Evaluate the Performance of Service Processes. 2011 IEEE 15th International Enterprise Distributed Object Computing Conference Workshops. doi:10.1109/edocw.2011.25
Ammar, S. & Wright, R. (1995), "A Fuzzy Logic Approach to Performance Evaluation". Uncertainty Modeling and Analysis, 1995, and Annual Conference of the North American Fuzzy Information Processing Society. Proceedings of ISUMA - NAFIPS '95., pp. 246 - 251
Ammar, S., & Wright, R. (2000). Applying fuzzy-set theory to performance evaluation. Socio-Economic Planning Sciences, 34(4), 285-302. doi:10.1016/s0038-0121(00)00004-5
[+]
Amini, S., & Jochem, R. (2011). A Conceptual Model Based on the Fuzzy Set Theory to Measure and Evaluate the Performance of Service Processes. 2011 IEEE 15th International Enterprise Distributed Object Computing Conference Workshops. doi:10.1109/edocw.2011.25
Ammar, S. & Wright, R. (1995), "A Fuzzy Logic Approach to Performance Evaluation". Uncertainty Modeling and Analysis, 1995, and Annual Conference of the North American Fuzzy Information Processing Society. Proceedings of ISUMA - NAFIPS '95., pp. 246 - 251
Ammar, S., & Wright, R. (2000). Applying fuzzy-set theory to performance evaluation. Socio-Economic Planning Sciences, 34(4), 285-302. doi:10.1016/s0038-0121(00)00004-5
Arango, M.D., Jaimes, W.A. & Zapata, J.A. (2010) "Gestion cadena de abastecimiento - Logistica con indicadores bajo incertidumbre, caso aplicado sector panificador palmira" Ciencia e Ingeniería Neogranadina, Vol. 20-1, pp. 97-115.
Beheshti, H. M., & Lollar, J. G. (2008). Fuzzy logic and performance evaluation: discussion and application. International Journal of Productivity and Performance Management, 57(3), 237-246. doi:10.1108/17410400810857248
Behrouzi, F., & Wong, K. Y. (2011). Lean performance evaluation of manufacturing systems: A dynamic and innovative approach. Procedia Computer Science, 3, 388-395. doi:10.1016/j.procs.2010.12.065
Chan, T.S., Ql, H.J. (2003), "An innovative performance measurement method for supply chain management". Sup-ply Chain Management: An International Journal Volume 8 Number 3, pp. 209-223.
Chan, F. T. S., Qi, H. J., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). A conceptual model of performance measurement for supply chains. Management Decision, 41(7), 635-642. doi:10.1108/00251740310495568
Chen, C.-T., Lin, C.-T., & Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289-301. doi:10.1016/j.ijpe.2005.03.009
Cheng, S., Hsu, B., & Shu, M. (2007). Fuzzy testing and selecting better processes performance. Industrial Management & Data Systems, 107(6), 862-881. doi:10.1108/02635570710758761
Ferreira, A., Azevedo,S. &Fazendeiro, P. (2012) "A Linguistic Approach to Supply Chain Performance Assessment". IEEE International Conference on Fuzzy Sistems, pp.1-5.
Lau, H. C. W., Kai Pang, W., & Wong, C. W. Y. (2002). Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, 15(4), 271-280. doi:10.1108/09576050210436110
Lalmazloumian M. & Yew K., (2012), "A Review of Modelling Approaches for Supply Chain Planning Under Un-certainty". 9th International Conference on Service Systems and Service Management (ICSSSM), pp. 197-203.
Liao, M.-Y., & Wu, C.-W. (2010). Evaluating process performance based on the incapability index for measurements with uncertainty. Expert Systems with Applications, 37(8), 5999-6006. doi:10.1016/j.eswa.2010.02.005
Lu, C. & Wei li, X. (2006), "Supply Chain Modeling Using Fuzzy Sets and Possibility Theory in an Uncertain Envi-ronment". The Sixth World Congress on Intelligent Control and Automation, Vol.2, pp. 3608-3612.
Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers & Industrial Engineering, 56(4), 1535-1544. doi:10.1016/j.cie.2008.09.038
Muñoz, M. J., Rivera, J. M., & Moneva, J. M. (2008). Evaluating sustainability in organisations with a fuzzy logic approach. Industrial Management & Data Systems, 108(6), 829-841. doi:10.1108/02635570810884030
Olugu, E. U., & Wong, K. Y. (2012). An expert fuzzy rule-based system for closed-loop supply chain performance assessment in the automotive industry. Expert Systems with Applications, 39(1), 375-384. doi:10.1016/j.eswa.2011.07.026
Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems, 32(2), 295-307. doi:10.1016/j.jmsy.2012.12.001
Theeranuphattana, A., & Tang, J. C. S. (2007). A conceptual model of performance measurement for supply chains. Journal of Manufacturing Technology Management, 19(1), 125-148. doi:10.1108/17410380810843480
Unahabhokha, C., Platts, K., & Hua Tan, K. (2007). Predictive performance measurement system. Benchmarking: An International Journal, 14(1), 77-91. doi:10.1108/14635770710730946
Van der Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management, 32(6), 409-430. doi:10.1108/09600030210437951
Wei, C., Liou, T., & Lee, K. (2008). An ERP performance measurement framework using a fuzzy integral approach. Journal of Manufacturing Technology Management, 19(5), 607-626. doi:10.1108/17410380810877285
Xu Xiao Xia, L., Ma, B. & Lim, R. (2008) "Supplier Performance Measurement in a Supply Chain". 6th IEEE Inter-national Conference on Industrial Informatics, pp. 877-881.
[-]