Mostrar el registro sencillo del ítem
dc.contributor.author | Gurrea Montesinos, Verónica | es_ES |
dc.contributor.author | Alfaro Saiz, Juan José | es_ES |
dc.contributor.author | Rodríguez Rodríguez, Raúl | es_ES |
dc.contributor.author | Verdecho Sáez, María José | es_ES |
dc.date.accessioned | 2015-05-18T10:34:57Z | |
dc.date.available | 2015-05-18T10:34:57Z | |
dc.date.issued | 2014-07-11 | |
dc.identifier.issn | 2340-5317 | |
dc.identifier.uri | http://hdl.handle.net/10251/50388 | |
dc.description.abstract | [EN] Performance management has become in a key success factor for any organization. Traditionally, performance management has focused uniquely in financial measures, mainly using quantitative measures, but two decades ago they were extended towards an integral view of the organization, appearing qualitative measures. This type of extended view and associated measures have a degree of uncertainty that needs to be bounded. One of the essential tools for uncertainty bounding is the fuzzy logic and, therefore,the main objective of this paper is the analysis of the literature about the application of fuzzy logic in performance measurement systems operating within uncertainty environments with the aim of categorizing, conceptualizing and classifying the works written so far. Finally, three categories are defined according to the different uses of fuzzy logic within performance management concluding that the most important application of fuzzy logic that counts with a higher number of studies is uncertainty bounding. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | International Journal of Production Management and Engineering | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Fuzzy logic | es_ES |
dc.subject | Uncertainty | es_ES |
dc.subject | Performance measurements | es_ES |
dc.subject | Performance management | es_ES |
dc.subject | Supply chain | es_ES |
dc.title | Application of fuzzy logic in performance management: a literature review | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2015-05-18T10:12:44Z | |
dc.identifier.doi | 10.4995/ijpme.2014.1859 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación en Gestión e Ingeniería de Producción - Centre d'Investigació en Gestió i Enginyeria de Producció | es_ES |
dc.description.bibliographicCitation | Gurrea Montesinos, V.; Alfaro Saiz, JJ.; Rodríguez Rodríguez, R.; Verdecho Sáez, MJ. (2014). Application of fuzzy logic in performance management: a literature review. International Journal of Production Management and Engineering. 2(2):93-100. https://doi.org/10.4995/ijpme.2014.1859 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ijpme.2014.1859 | es_ES |
dc.description.upvformatpinicio | 93 | es_ES |
dc.description.upvformatpfin | 100 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 2340-4876 | |
dc.description.references | Amini, S., & Jochem, R. (2011). A Conceptual Model Based on the Fuzzy Set Theory to Measure and Evaluate the Performance of Service Processes. 2011 IEEE 15th International Enterprise Distributed Object Computing Conference Workshops. doi:10.1109/edocw.2011.25 | es_ES |
dc.description.references | Ammar, S. & Wright, R. (1995), "A Fuzzy Logic Approach to Performance Evaluation". Uncertainty Modeling and Analysis, 1995, and Annual Conference of the North American Fuzzy Information Processing Society. Proceedings of ISUMA - NAFIPS '95., pp. 246 - 251 | es_ES |
dc.description.references | Ammar, S., & Wright, R. (2000). Applying fuzzy-set theory to performance evaluation. Socio-Economic Planning Sciences, 34(4), 285-302. doi:10.1016/s0038-0121(00)00004-5 | es_ES |
dc.description.references | Arango, M.D., Jaimes, W.A. & Zapata, J.A. (2010) "Gestion cadena de abastecimiento - Logistica con indicadores bajo incertidumbre, caso aplicado sector panificador palmira" Ciencia e Ingeniería Neogranadina, Vol. 20-1, pp. 97-115. | es_ES |
dc.description.references | Beheshti, H. M., & Lollar, J. G. (2008). Fuzzy logic and performance evaluation: discussion and application. International Journal of Productivity and Performance Management, 57(3), 237-246. doi:10.1108/17410400810857248 | es_ES |
dc.description.references | Behrouzi, F., & Wong, K. Y. (2011). Lean performance evaluation of manufacturing systems: A dynamic and innovative approach. Procedia Computer Science, 3, 388-395. doi:10.1016/j.procs.2010.12.065 | es_ES |
dc.description.references | Chan, T.S., Ql, H.J. (2003), "An innovative performance measurement method for supply chain management". Sup-ply Chain Management: An International Journal Volume 8 Number 3, pp. 209-223. | es_ES |
dc.description.references | Chan, F. T. S., Qi, H. J., Chan, H. K., Lau, H. C. W., & Ip, R. W. L. (2003). A conceptual model of performance measurement for supply chains. Management Decision, 41(7), 635-642. doi:10.1108/00251740310495568 | es_ES |
dc.description.references | Chen, C.-T., Lin, C.-T., & Huang, S.-F. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. International Journal of Production Economics, 102(2), 289-301. doi:10.1016/j.ijpe.2005.03.009 | es_ES |
dc.description.references | Cheng, S., Hsu, B., & Shu, M. (2007). Fuzzy testing and selecting better processes performance. Industrial Management & Data Systems, 107(6), 862-881. doi:10.1108/02635570710758761 | es_ES |
dc.description.references | Ferreira, A., Azevedo,S. &Fazendeiro, P. (2012) "A Linguistic Approach to Supply Chain Performance Assessment". IEEE International Conference on Fuzzy Sistems, pp.1-5. | es_ES |
dc.description.references | Lau, H. C. W., Kai Pang, W., & Wong, C. W. Y. (2002). Methodology for monitoring supply chain performance: a fuzzy logic approach. Logistics Information Management, 15(4), 271-280. doi:10.1108/09576050210436110 | es_ES |
dc.description.references | Lalmazloumian M. & Yew K., (2012), "A Review of Modelling Approaches for Supply Chain Planning Under Un-certainty". 9th International Conference on Service Systems and Service Management (ICSSSM), pp. 197-203. | es_ES |
dc.description.references | Liao, M.-Y., & Wu, C.-W. (2010). Evaluating process performance based on the incapability index for measurements with uncertainty. Expert Systems with Applications, 37(8), 5999-6006. doi:10.1016/j.eswa.2010.02.005 | es_ES |
dc.description.references | Lu, C. & Wei li, X. (2006), "Supply Chain Modeling Using Fuzzy Sets and Possibility Theory in an Uncertain Envi-ronment". The Sixth World Congress on Intelligent Control and Automation, Vol.2, pp. 3608-3612. | es_ES |
dc.description.references | Mahnam, M., Yadollahpour, M. R., Famil-Dardashti, V., & Hejazi, S. R. (2009). Supply chain modeling in uncertain environment with bi-objective approach. Computers & Industrial Engineering, 56(4), 1535-1544. doi:10.1016/j.cie.2008.09.038 | es_ES |
dc.description.references | Muñoz, M. J., Rivera, J. M., & Moneva, J. M. (2008). Evaluating sustainability in organisations with a fuzzy logic approach. Industrial Management & Data Systems, 108(6), 829-841. doi:10.1108/02635570810884030 | es_ES |
dc.description.references | Olugu, E. U., & Wong, K. Y. (2012). An expert fuzzy rule-based system for closed-loop supply chain performance assessment in the automotive industry. Expert Systems with Applications, 39(1), 375-384. doi:10.1016/j.eswa.2011.07.026 | es_ES |
dc.description.references | Tabrizi, B. H., & Razmi, J. (2013). Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. Journal of Manufacturing Systems, 32(2), 295-307. doi:10.1016/j.jmsy.2012.12.001 | es_ES |
dc.description.references | Theeranuphattana, A., & Tang, J. C. S. (2007). A conceptual model of performance measurement for supply chains. Journal of Manufacturing Technology Management, 19(1), 125-148. doi:10.1108/17410380810843480 | es_ES |
dc.description.references | Unahabhokha, C., Platts, K., & Hua Tan, K. (2007). Predictive performance measurement system. Benchmarking: An International Journal, 14(1), 77-91. doi:10.1108/14635770710730946 | es_ES |
dc.description.references | Van der Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management, 32(6), 409-430. doi:10.1108/09600030210437951 | es_ES |
dc.description.references | Wei, C., Liou, T., & Lee, K. (2008). An ERP performance measurement framework using a fuzzy integral approach. Journal of Manufacturing Technology Management, 19(5), 607-626. doi:10.1108/17410380810877285 | es_ES |
dc.description.references | Xu Xiao Xia, L., Ma, B. & Lim, R. (2008) "Supplier Performance Measurement in a Supply Chain". 6th IEEE Inter-national Conference on Industrial Informatics, pp. 877-881. | es_ES |