Ahocoder, http://aholab.ehu.es/ahocoder
Coursera, http://www.coursera.org
HMM-Based Speech Synthesis System (HTS), http://hts.sp.nitech.ac.jp
[+]
Ahocoder, http://aholab.ehu.es/ahocoder
Coursera, http://www.coursera.org
HMM-Based Speech Synthesis System (HTS), http://hts.sp.nitech.ac.jp
Khan Academy, http://www.khanacademy.org
Axelrod, A., He, X., Gao, J.: Domain adaptation via pseudo in-domain data selection. In: Proc. of EMNLP, pp. 355–362 (2011)
Bottou, L.: Stochastic gradient learning in neural networks. In: Proceedings of Neuro-Nîmes 1991. EC2, Nimes, France (1991)
Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 30–42 (2012)
Erro, D., Sainz, I., Navas, E., Hernaez, I.: Harmonics plus noise model based vocoder for statistical parametric speech synthesis. IEEE Journal of Selected Topics in Signal Processing 8(2), 184–194 (2014)
Fan, Y., Qian, Y., Xie, F., Soong, F.: TTS synthesis with bidirectional LSTM based recurrent neural networks. In: Proc. of Interspeech (submitted 2014)
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine 29(6), 82–97 (2012)
Hunt, A.J., Black, A.W.: Unit selection in a concatenative speech synthesis system using a large speech database. In: Proc. of ICASSP, vol. 1, pp. 373–376 (1996)
King, S.: Measuring a decade of progress in text-to-speech. Loquens 1(1), e006 (2014)
Koehn, P.: Statistical Machine Translation. Cambridge University Press (2010)
Kominek, J., Schultz, T., Black, A.W.: Synthesizer voice quality of new languages calibrated with mean mel cepstral distortion. In: Proc. of SLTU, pp. 63–68 (2008)
Lopez, A.: Statistical machine translation. ACM Computing Surveys 40(3), 8:1–8:49 (2008)
poliMedia: The polimedia video-lecture repository (2007), http://media.upv.es
Sainz, I., Erro, D., Navas, E., Hernáez, I., Sánchez, J., Saratxaga, I.: Aholab speech synthesizer for albayzin 2012 speech synthesis evaluation. In: Proc. of IberSPEECH, pp. 645–652 (2012)
Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent dnn for conversational speech transcription. In: Proc. of ASRU, pp. 24–29 (2011)
Shinoda, K., Watanabe, T.: MDL-based context-dependent subword modeling for speech recognition. Journal of the Acoustical Society of Japan 21(2), 79–86 (2000)
Silvestre-Cerdà, J.A., et al.: Translectures. In: Proc. of IberSPEECH, pp. 345–351 (2012)
TED Ideas worth spreading, http://www.ted.com
The transLectures-UPV Team.: The transLectures-UPV toolkit (TLK), http://translectures.eu/tlk
Toda, T., Black, A.W., Tokuda, K.: Mapping from articulatory movements to vocal tract spectrum with Gaussian mixture model for articulatory speech synthesis. In: Proc. of ISCA Speech Synthesis Workshop (2004)
Tokuda, K., Kobayashi, T., Imai, S.: Speech parameter generation from hmm using dynamic features. In: Proc. of ICASSP, vol. 1, pp. 660–663 (1995)
Tokuda, K., Masuko, T., Miyazaki, N., Kobayashi, T.: Multi-space probability distribution HMM. IEICE Transactions on Information and Systems 85(3), 455–464 (2002)
transLectures: D3.1.2: Second report on massive adaptation, http://www.translectures.eu/wp-content/uploads/2014/01/transLectures-D3.1.2-15Nov2013.pdf
Turró, C., Ferrando, M., Busquets, J., Cañero, A.: Polimedia: a system for successful video e-learning. In: Proc. of EUNIS (2009)
Videolectures.NET: Exchange ideas and share knowledge, http://www.videolectures.net
Wu, Y.J., King, S., Tokuda, K.: Cross-lingual speaker adaptation for HMM-based speech synthesis. In: Proc. of ISCSLP, pp. 1–4 (2008)
Yamagishi, J.: An introduction to HMM-based speech synthesis. Tech. rep. Centre for Speech Technology Research (2006), https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/TrajectoryModelling/HTS-Introduction.pdf
Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.: Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis. In: Proc. of Eurospeech, pp. 2347–2350 (1999)
Zen, H., Senior, A.: Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis. In: Proc. of ICASSP, pp. 3872–3876 (2014)
Zen, H., Senior, A., Schuster, M.: Statistical parametric speech synthesis using deep neural networks. In: Proc. of ICASSP, pp. 7962–7966 (2013)
Zen, H., Tokuda, K., Black, A.W.: Statistical parametric speech synthesis. Speech Communication 51(11), 1039–1064 (2009)
[-]