- -

The TransLectures-UPV Toolkit

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

The TransLectures-UPV Toolkit

Show full item record

Del Agua Teba, MA.; Giménez Pastor, A.; Serrano Martinez Santos, N.; Andrés Ferrer, J.; Civera Saiz, J.; Sanchis Navarro, JA.; Juan Císcar, A. (2014). The TransLectures-UPV Toolkit. En Advances in Speech and Language Technologies for Iberian Languages: Second International Conference, IberSPEECH 2014, Las Palmas de Gran Canaria, Spain, November 19-21, 2014. Proceedings. Springer International Publishing. 269-278. https://doi.org/10.1007/978-3-319-13623-3_28

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50452

Files in this item

Item Metadata

Title: The TransLectures-UPV Toolkit
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
Over the past few years, online multimedia educational repositories have increased in number and popularity. The main aim of the transLectures project is to develop cost-effective solutions for producing accurate transcriptions ...[+]
Subjects: TLK , ASR toolkit , transLectures , HMM
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-319-13622-6
Source:
Advances in Speech and Language Technologies for Iberian Languages: Second International Conference, IberSPEECH 2014, Las Palmas de Gran Canaria, Spain, November 19-21, 2014. Proceedings. (issn: 0302-9743 )
DOI: 10.1007/978-3-319-13623-3_28
Publisher:
Springer International Publishing
Publisher version: http://link.springer.com/chapter/10.1007/978-3-319-13623-3_28
Series: Lecture Notes in Computer Science;8854
Project ID: info:eu-repo/grantAgreement/EC/FP7/287755/EU
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13623-3_28
Thanks:
The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 287755 (transLectures) and ICT Policy Support Programme (ICT PSP/2007-2013) ...[+]
Type: Capítulo de libro

References

Final report on massive adaptation (M36). To be delivered on October 2014 (2014)

First report on massive adaptation (M12), https://www.translectures.eu/wp-content/uploads/2013/05/transLectures-D3.1.1-18Nov2012.pdf

Opencast Matterhorn, http://opencast.org/matterhorn/ [+]
Final report on massive adaptation (M36). To be delivered on October 2014 (2014)

First report on massive adaptation (M12), https://www.translectures.eu/wp-content/uploads/2013/05/transLectures-D3.1.1-18Nov2012.pdf

Opencast Matterhorn, http://opencast.org/matterhorn/

sclite - Score speech recognition system output, http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

Second report on massive adaptation (M24), https://www.translectures.eu//wp-content/uploads/2014/01/transLectures-D3.1.2-15Nov2013.pdf

TLK: The transLectures-UPV Toolkit, https://www.translectures.eu/tlk/

Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)

Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 30–42 (2012)

Digalakis, V., Rtischev, D., Neumeyer, L., Sa, E.: Speaker Adaptation Using Constrained Estimation of Gaussian Mixtures. IEEE Transactions on Speech and Audio Processing 3, 357–366 (1995)

Huang, J.T., Li, J., Yu, D., Deng, L., Gong, Y.: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. In: Proc. of ICASSP (2013)

Munteanu, C., Baecker, R., Penn, G., Toms, E., James, D.: The Effect of Speech Recognition Accuracy Rates on the Usefulness and Usability of Webcast Archives. In: Proc. of CHI, pp. 493–502 (2006)

Ney, H., Ortmanns, S.: Progress in dynamic programming search for LVCSR. Proceedings of the IEEE 88(8), 1224–1240 (2000)

Ortmanns, S., Ney, H., Eiden, A.: Language-model look-ahead for large vocabulary speech recognition. In: Proc. of ICSLP, vol. 4, pp. 2095–2098 (1996)

Ortmanns, S., Ney, H., Aubert, X.: A word graph algorithm for large vocabulary continuous speech recognition. Computer Speech and Language 11(1), 43–72 (1997)

Povey, D., et al.: The Kaldi Speech Recognition Toolkit. In: Proc. of ASRU (2011)

Rumelhart, D., Hintont, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

Rybach, D., et al.: The RWTH Aachen University Open Source Speech Recognition System. In: Proc. Interspeech, pp. 2111–2114 (2009)

Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in Context-Dependent Deep Neural Networks for conversational speech transcription. In: Proc. of ASRU, pp. 24–29 (2011)

Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)

Young, S., et al.: The HTK Book. Cambridge University Engineering Department (1995)

Young, S.J., Odell, J.J., Woodland, P.C.: Tree-based state tying for high accuracy acoustic modelling. In: Proc. of HLT, pp. 307–312 (1994)

[-]

This item appears in the following Collection(s)

Show full item record