Final report on massive adaptation (M36). To be delivered on October 2014 (2014)
First report on massive adaptation (M12), https://www.translectures.eu/wp-content/uploads/2013/05/transLectures-D3.1.1-18Nov2012.pdf
Opencast Matterhorn, http://opencast.org/matterhorn/
[+]
Final report on massive adaptation (M36). To be delivered on October 2014 (2014)
First report on massive adaptation (M12), https://www.translectures.eu/wp-content/uploads/2013/05/transLectures-D3.1.1-18Nov2012.pdf
Opencast Matterhorn, http://opencast.org/matterhorn/
sclite - Score speech recognition system output, http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
Second report on massive adaptation (M24), https://www.translectures.eu//wp-content/uploads/2014/01/transLectures-D3.1.2-15Nov2013.pdf
TLK: The transLectures-UPV Toolkit, https://www.translectures.eu/tlk/
Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)
Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 30–42 (2012)
Digalakis, V., Rtischev, D., Neumeyer, L., Sa, E.: Speaker Adaptation Using Constrained Estimation of Gaussian Mixtures. IEEE Transactions on Speech and Audio Processing 3, 357–366 (1995)
Huang, J.T., Li, J., Yu, D., Deng, L., Gong, Y.: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. In: Proc. of ICASSP (2013)
Munteanu, C., Baecker, R., Penn, G., Toms, E., James, D.: The Effect of Speech Recognition Accuracy Rates on the Usefulness and Usability of Webcast Archives. In: Proc. of CHI, pp. 493–502 (2006)
Ney, H., Ortmanns, S.: Progress in dynamic programming search for LVCSR. Proceedings of the IEEE 88(8), 1224–1240 (2000)
Ortmanns, S., Ney, H., Eiden, A.: Language-model look-ahead for large vocabulary speech recognition. In: Proc. of ICSLP, vol. 4, pp. 2095–2098 (1996)
Ortmanns, S., Ney, H., Aubert, X.: A word graph algorithm for large vocabulary continuous speech recognition. Computer Speech and Language 11(1), 43–72 (1997)
Povey, D., et al.: The Kaldi Speech Recognition Toolkit. In: Proc. of ASRU (2011)
Rumelhart, D., Hintont, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Rybach, D., et al.: The RWTH Aachen University Open Source Speech Recognition System. In: Proc. Interspeech, pp. 2111–2114 (2009)
Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in Context-Dependent Deep Neural Networks for conversational speech transcription. In: Proc. of ASRU, pp. 24–29 (2011)
Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), 260–269 (1967)
Young, S., et al.: The HTK Book. Cambridge University Engineering Department (1995)
Young, S.J., Odell, J.J., Woodland, P.C.: Tree-based state tying for high accuracy acoustic modelling. In: Proc. of HLT, pp. 307–312 (1994)
[-]