- -

Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations

Mostrar el registro completo del ítem

Abalos Aguado, T.; Moragues Pons, ME.; Royo Calvo, S.; Jiménez, D.; Martínez Mañez, R.; Soto Camino, J.; Sancenón Galarza, F.... (2012). Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations. European Journal of Inorganic Chemistry. (1):76-84. doi:10.1002/ejic.201100834

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50542

Ficheros en el ítem

Metadatos del ítem

Título: Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations
Autor: Ábalos Aguado, Tatiana Moragues Pons, María Esperanza Royo Calvo, Santiago Jiménez, Diego Martínez Mañez, Ramón Soto Camino, Juan Sancenón Galarza, Félix Gil Grau, Salvador Cano, Joan
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
A family of dyes (L 1-L 6) that contain a thiazolylazo group as signalling subunit and several macrocyclic cavities with different ring sizes and type and number of heteroatoms as binding sites has been synthesized and ...[+]
Palabras clave: Azodyes , Cation sensors , Chemosensors , Density functional calculations , Dyes , Lead , Mercury
Derechos de uso: Reserva de todos los derechos
Fuente:
European Journal of Inorganic Chemistry. (issn: 1434-1948 ) (eissn: 1099-0682 )
DOI: 10.1002/ejic.201100834
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/ejic.201100834
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00010/ES/NANOCIENCIA MOLECULAR/ /
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
info:eu-repo/grantAgreement/MICINN//CTQ2010-15364/ES/MAGNETISMO MOLECULAR: COMPUESTOS DE COORDINACION MAGNETICOS MULTIFUNCIONALES / /
Agradecimientos:
Financial support by the Spanish Ministerio de Ciencia e Innovacion (MICINN) through projects MAT2009-14564-C04-01, CTQ2010-15364, Molecular Nanoscience (Consolider Ingenio CSD2007-00010) and Generalitat Valenciana ...[+]
Tipo: Artículo

References

Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 24(3), 197. doi:10.1039/cs9952400197

Bissell, R. A., de Silva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M., & Sandanayake, K. R. A. S. (1992). Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev., 21(3), 187-195. doi:10.1039/cs9922100187

Dix, J. P., & Vögtle, F. (1978). Ionenselektive Kronenether-Farbstoffe. Angewandte Chemie, 90(11), 893-894. doi:10.1002/ange.19780901109 [+]
Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 24(3), 197. doi:10.1039/cs9952400197

Bissell, R. A., de Silva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M., & Sandanayake, K. R. A. S. (1992). Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev., 21(3), 187-195. doi:10.1039/cs9922100187

Dix, J. P., & Vögtle, F. (1978). Ionenselektive Kronenether-Farbstoffe. Angewandte Chemie, 90(11), 893-894. doi:10.1002/ange.19780901109

Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e

Beer, P. D., & Gale, P. A. (2001). Erkennung und Nachweis von Anionen: gegenwärtiger Stand und Perspektiven. Angewandte Chemie, 113(3), 502-532. doi:10.1002/1521-3757(20010202)113:3<502::aid-ange502>3.0.co;2-a

Valeur, B. (2000). Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 205(1), 3-40. doi:10.1016/s0010-8545(00)00246-0

Czarnik, A. W. (1994). Chemical Communication in Water Using Fluorescent Chemosensors. Accounts of Chemical Research, 27(10), 302-308. doi:10.1021/ar00046a003

Rurack, K., & Resch-Genger, U. (2002). Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 31(2), 116-127. doi:10.1039/b100604p

De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386p

Rurack, K. (2001). Flipping the light switch ‘ON’ – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(11), 2161-2195. doi:10.1016/s1386-1425(01)00492-9

Loehr, H. G., & Voegtle, F. (1985). Chromo- and fluoroionophores. A new class of dye reagents. Accounts of Chemical Research, 18(3), 65-72. doi:10.1021/ar00111a001

Takagi, M., & Ueno, K. (1984). Crown compounds as alkali and alkaline earth metal ion selective chromogenic reagents. Host Guest Complex Chemistry III, 39-65. doi:10.1007/3-540-12821-2_2

Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111

Chen, Y.-J., & Chung, W.-S. (2009). Tetrazoles and para-Substituted Phenylazo-Coupled Calix[4]arenes as Highly Sensitive Chromogenic Sensors for Ca2+. European Journal of Organic Chemistry, 2009(28), 4770-4776. doi:10.1002/ejoc.200900603

Lee, H. G., Lee, J.-E., & Choi, K. S. (2006). Chromoionophoric N2S2 macrocycles exhibiting mercury(II) selectivity. Inorganic Chemistry Communications, 9(6), 582-585. doi:10.1016/j.inoche.2006.03.005

Mahato, P., Ghosh, A., Saha, S., Mishra, S., Mishra, S. K., & Das, A. (2010). Recognition of Hg2+Using Diametrically Disubstituted Cyclam Unit. Inorganic Chemistry, 49(24), 11485-11492. doi:10.1021/ic1014797

Hovind, H. R. (1975). Thiazolylazo dyes and their applications in analytical chemistry. A review. The Analyst, 100(1196), 769. doi:10.1039/an9750000769

Lemos, V. A., Santos, E. S., Santos, M. S., & Yamaki, R. T. (2007). Thiazolylazo dyes and their application in analytical methods. Microchimica Acta, 158(3-4), 189-204. doi:10.1007/s00604-006-0704-9

Saeed, M. M., Bajwa, S. Z., Ansari, M. S., & Ahmed, R. (2005). Solid phase sorption of microamount of Hg(II) onto 1-(2-thiazolylazo)-2-naphthol (TAN) loaded polyurethane foam. Radiochimica Acta, 93(3). doi:10.1524/ract.93.3.177.61610

Starvin, A. M., & Rao, T. P. (2004). Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant. Journal of Hazardous Materials, 113(1-3), 75-79. doi:10.1016/j.jhazmat.2004.04.021

Wang, M., Lin, J.-M., Qu, F., Shan, X., & Chen, Z. (2004). On-capillary complexation of metal ions with 4-(2-thiazolylazo)resorcinol in capillary electrophoresis. Journal of Chromatography A, 1029(1-2), 249-254. doi:10.1016/j.chroma.2003.12.011

Takase, I. (2003). The use of 2-2-thiazolylazo-p-cresol to minimize the interference of Ni and Cu for the bismuth determination in alloys by hydride generation atomic absorption spectrometry. Talanta, 61(5), 597-602. doi:10.1016/s0039-9140(03)00365-5

Amin, A. S. (2001). SPECTROPHOTOMETRIC DETERMINATION OF CADMIUM USING THIAZOLYLAZO CHROMOGENIC REAGENTS IN THE PRESENCE OF TRITON X-100: APPLICATION IN ENVIRONMENTAL SAMPLES. Analytical Letters, 34(1), 163-176. doi:10.1081/al-100002714

Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a

Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2

Richman, J. E., & Atkins, T. J. (1974). Nitrogen analogs of crown ethers. Journal of the American Chemical Society, 96(7), 2268-2270. doi:10.1021/ja00814a056

MACROCYCLIC POLYAMINES: 1,4,7,10,13,16-HEXA&#196;ZACYCLO&#214;CTADECANE. (1978). Organic Syntheses, 58, 86. doi:10.15227/orgsyn.058.0086

Krakowiak, K. E., Bradshaw, J. S., & Zamecka-Krakowiak, D. J. (1989). Synthesis of aza-crown ethers. Chemical Reviews, 89(4), 929-972. doi:10.1021/cr00094a008

Higashino, K., Nakaya, T., & Ishiguro, E. (1994). Photovoltaic properties of azo compounds containing the thiazole group. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 81-88. doi:10.1016/1010-6030(94)87017-9

Mustroph, H., & Epperlein, J. (2010). Quantitative Beschreibung der Absorptionsmaxima von substituierten 2-Thiazol-azofarbstoffen. Zeitschrift für Chemie, 23(8), 298-299. doi:10.1002/zfch.19830230810

Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Spieles, M., & Rurack, K. (2008). Squaraines as Reporter Units: Insights into their Photophysics, Protonation, and Metal-Ion Coordination Behaviour. Chemistry - A European Journal, 14(32), 10101-10114. doi:10.1002/chem.200800300

Forlani, L., De Maria, P., & Fini, A. (1980). Electrical effects in substituted thiazoles. pK a Values of some 5-substituted 2-aminothiazoles and 5-substituted 2-NN-dimethylaminothiazoles. Journal of the Chemical Society, Perkin Transactions 2, (8), 1156. doi:10.1039/p29800001156

Haake, P., & Bausher, L. P. (1968). Thiazolium ions and related heteroaromatic systems. II. The acidity constants of thiazolium, oxazolium, and imidazolium ions. The Journal of Physical Chemistry, 72(6), 2213-2217. doi:10.1021/j100852a057

SAWICKI, E. (1957). Physical Properties of the Aminoazobenzene Dyes. IV. The Position of Proton Addition1. The Journal of Organic Chemistry, 22(4), 365-367. doi:10.1021/jo01355a004

Siiman, O., & Lepp, A. (1984). Protonation of the methyl orange derivative of aspartate adsorbed on colloidal silver: a surface-enhanced resonance Raman scattering and fluorescence emission study. The Journal of Physical Chemistry, 88(12), 2641-2650. doi:10.1021/j150656a043

WADA, H., NAKAZAWA, O., & NAKAGAWA, G. (1974). Evaluation of 1-(2-thiazolylazo)-2-hydroxy-3-naphthoic acid as a metallochromic indicator. Talanta, 21(1), 97-102. doi:10.1016/0039-9140(74)80068-8

Critical Stability Cosntants R. M. Smith A. E. Martell New York Vol. 2 1974

García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines:  Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069z

HyperChem. 6.03 Molecular Modeling System 2000

(s. f.). doi:10.1021/ol062351

Kim, H. J., Kim, S. H., Kim, J. H., Anh, L. N., Lee, J. H., Lee, C.-H., & Kim, J. S. (2009). ICT-based Cu(II)-sensing 9,10-anthraquinonecalix[4]crown. Tetrahedron Letters, 50(23), 2782-2786. doi:10.1016/j.tetlet.2009.03.149

Ábalos, T., Jiménez, D., Moragues, M., Royo, S., Martínez-Máñez, R., Sancenón, F., … Gil, S. (2010). Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions. Dalton Transactions, 39(14), 3449. doi:10.1039/b921486k

Schmittel, M., & Lin, H.-W. (2007). Quadruple-Channel Sensing: A Molecular Sensor with a Single Type of Receptor Site for Selective and Quantitative Multi-Ion Analysis. Angewandte Chemie, 119(6), 911-914. doi:10.1002/ange.200603362

Nolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000q

Zhang, X., & Huang, J. (2010). Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chemical Communications, 46(33), 6042. doi:10.1039/c0cc01072c

Zhao, Q., Liu, S., Li, F., Yi, T., & Huang, C. (2008). Multisignaling detection of Hg2+ based on a phosphorescent iridium(iii) complex. Dalton Transactions, (29), 3836. doi:10.1039/b804858d

Tatay, S., Gaviña, P., Coronado, E., & Palomares, E. (2006). Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye. Organic Letters, 8(17), 3857-3860. doi:10.1021/ol0615580

Lee, H., & Lee, S. S. (2009). Thiaoxaaza-Macrocyclic Chromoionophores as Mercury(II) Sensors: Synthesis and Color Modulation. Organic Letters, 11(6), 1393-1396. doi:10.1021/ol900241p

Yoon, S., Miller, E. W., He, Q., Do, P. H., & Chang, C. J. (2007). A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angewandte Chemie, 119(35), 6778-6781. doi:10.1002/ange.200701785

Rurack, K., Resch-Genger, U., Spieles, M., & Bricks, J. L. (2000). Cation-triggered ‘switching on’ of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores. Chemical Communications, (21), 2103-2104. doi:10.1039/b006430k

Su Lim, C., Won Kang, D., Shun Tian, Y., Hee Han, J., Lim Hwang, H., & Rae Cho, B. (2010). Detection of mercury in fish organs with a two-photon fluorescent probe. Chemical Communications, 46(14), 2388. doi:10.1039/b922305c

Ros-Lis, J. V., Martínez-Máñez, R., Rurack, K., Sancenón, F., Soto, J., & Spieles, M. (2004). Highly Selective Chromogenic Signaling of Hg2+in Aqueous Media at Nanomolar Levels Employing a Squaraine-Based Reporter. Inorganic Chemistry, 43(17), 5183-5185. doi:10.1021/ic049422q

Descalzo, A. B., Martínez-Máñez, R., Radeglia, R., Rurack, K., & Soto, J. (2003). Coupling Selectivity with Sensitivity in an Integrated Chemosensor Framework:  Design of a Hg2+-Responsive Probe, Operating above 500 nm. Journal of the American Chemical Society, 125(12), 3418-3419. doi:10.1021/ja0290779

Yuan, M., Li, Y., Li, J., Li, C., Liu, X., Lv, J., … Zhu, D. (2007). A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic Letters, 9(12), 2313-2316. doi:10.1021/ol0706399

Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t

Tian, M., & Ihmels, H. (2009). Selective ratiometric detection of mercury(ii) ions in water with an acridizinium-based fluorescent probe. Chemical Communications, (22), 3175. doi:10.1039/b821830g

Tian, M., Ihmels, H., & Benner, K. (2010). Selective detection of Hg2+ in the microenvironment of double-stranded DNA with an intercalator crown-ether conjugate. Chemical Communications, 46(31), 5719. doi:10.1039/c002727h

Wang, H.-H., Xue, L., Qian, Y.-Y., & Jiang, H. (2010). Novel Ratiometric Fluorescent Sensor for Silver Ions. Organic Letters, 12(2), 292-295. doi:10.1021/ol902624h

Atilgan, S., Kutuk, I., & Ozdemir, T. (2010). A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II). Tetrahedron Letters, 51(6), 892-894. doi:10.1016/j.tetlet.2009.12.025

Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Soto, J., Benito, Á., & García-Breijo, E. (2005). Multi-Channel Receptors and Their Relation to Guest Chemosensing and Reconfigurable Molecular Logic Gates. European Journal of Inorganic Chemistry, 2005(12), 2393-2403. doi:10.1002/ejic.200400844

Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799

Gaussian 09 2009

Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439-4449. doi:10.1063/1.475855

Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem