Mostrar el registro sencillo del ítem
dc.contributor.author | Ábalos Aguado, Tatiana | es_ES |
dc.contributor.author | Moragues Pons, María Esperanza | es_ES |
dc.contributor.author | Royo Calvo, Santiago | es_ES |
dc.contributor.author | Jiménez, Diego | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Soto Camino, Juan | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Cano, Joan | es_ES |
dc.date.accessioned | 2015-05-20T10:29:06Z | |
dc.date.issued | 2012-01 | |
dc.identifier.issn | 1434-1948 | |
dc.identifier.uri | http://hdl.handle.net/10251/50542 | |
dc.description.abstract | A family of dyes (L 1-L 6) that contain a thiazolylazo group as signalling subunit and several macrocyclic cavities with different ring sizes and type and number of heteroatoms as binding sites has been synthesized and characterized. Solutions of L 1-L 6 in acetonitrile show broad and structureless absorption bands in the 554-577 nm range with typicalmolar absorption coefficients that range from 20000 to 32000 M -1 cm -1. A detailed protonation study was carried out with solutions of L 1, L 2 and L 5 in acetonitrile. Addition of one equivalent of protons to L 1 and L 2 resulted in the development of a new band at 425 and 370 nm, respectively, which was ascribed to protonation in the aniline nitrogen. In contrast, protonation of L 5 resulted in a bathochromic shift of 25 nm of the absorption band that was conceivable with protonation of one of the nitrogen atoms of the azo moiety. These results were in agreement with 1H NMR spectroscopic data. Theoretical studies on the model ligand L 1 and on different possible protonation species were also performed by using density functional theory (DFT) quantum mechanical calculations. Colour modulations in solutions of L 1-L 6 in acetonitrile in the presence of the metal cations Fe 3+, Ni 2+, Zn 2+, Cd 2+, Pb 2+ and Hg 2+ have been studied. A selective chromogenic response of L 4 in the presence of Pb 2+ and L 5 in the presence of Hg 2+ was observed. To get a better insight into the chromophoric nature in the presence of metal cations, the interaction of Hg 2+ with the model compound L 1 in two different coordination modes was studied theoretically by using density functional theory (DFT) quantum mechanical calculations. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministerio de Ciencia e Innovacion (MICINN) through projects MAT2009-14564-C04-01, CTQ2010-15364, Molecular Nanoscience (Consolider Ingenio CSD2007-00010) and Generalitat Valenciana (PROMETEO/2009/016 and PROMETEO/2009/108) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | European Journal of Inorganic Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Azodyes | es_ES |
dc.subject | Cation sensors | es_ES |
dc.subject | Chemosensors | es_ES |
dc.subject | Density functional calculations | es_ES |
dc.subject | Dyes | es_ES |
dc.subject | Lead | es_ES |
dc.subject | Mercury | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/ejic.201100834 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00010/ES/NANOCIENCIA MOLECULAR/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-15364/ES/MAGNETISMO MOLECULAR: COMPUESTOS DE COORDINACION MAGNETICOS MULTIFUNCIONALES / / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Abalos Aguado, T.; Moragues Pons, ME.; Royo Calvo, S.; Jiménez, D.; Martínez Mañez, R.; Soto Camino, J.; Sancenón Galarza, F.... (2012). Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations. European Journal of Inorganic Chemistry. (1):76-84. doi:10.1002/ejic.201100834 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/ejic.201100834 | es_ES |
dc.description.upvformatpinicio | 76 | es_ES |
dc.description.upvformatpfin | 84 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 209160 | |
dc.identifier.eissn | 1099-0682 | |
dc.description.references | Fabbrizzi, L., & Poggi, A. (1995). Sensors and switches from supramolecular chemistry. Chemical Society Reviews, 24(3), 197. doi:10.1039/cs9952400197 | es_ES |
dc.description.references | Bissell, R. A., de Silva, A. P., Gunaratne, H. Q. N., Lynch, P. L. M., Maguire, G. E. M., & Sandanayake, K. R. A. S. (1992). Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev., 21(3), 187-195. doi:10.1039/cs9922100187 | es_ES |
dc.description.references | Dix, J. P., & Vögtle, F. (1978). Ionenselektive Kronenether-Farbstoffe. Angewandte Chemie, 90(11), 893-894. doi:10.1002/ange.19780901109 | es_ES |
dc.description.references | Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e | es_ES |
dc.description.references | Beer, P. D., & Gale, P. A. (2001). Erkennung und Nachweis von Anionen: gegenwärtiger Stand und Perspektiven. Angewandte Chemie, 113(3), 502-532. doi:10.1002/1521-3757(20010202)113:3<502::aid-ange502>3.0.co;2-a | es_ES |
dc.description.references | Valeur, B. (2000). Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 205(1), 3-40. doi:10.1016/s0010-8545(00)00246-0 | es_ES |
dc.description.references | Czarnik, A. W. (1994). Chemical Communication in Water Using Fluorescent Chemosensors. Accounts of Chemical Research, 27(10), 302-308. doi:10.1021/ar00046a003 | es_ES |
dc.description.references | Rurack, K., & Resch-Genger, U. (2002). Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 31(2), 116-127. doi:10.1039/b100604p | es_ES |
dc.description.references | De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386p | es_ES |
dc.description.references | Rurack, K. (2001). Flipping the light switch ‘ON’ – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57(11), 2161-2195. doi:10.1016/s1386-1425(01)00492-9 | es_ES |
dc.description.references | Loehr, H. G., & Voegtle, F. (1985). Chromo- and fluoroionophores. A new class of dye reagents. Accounts of Chemical Research, 18(3), 65-72. doi:10.1021/ar00111a001 | es_ES |
dc.description.references | Takagi, M., & Ueno, K. (1984). Crown compounds as alkali and alkaline earth metal ion selective chromogenic reagents. Host Guest Complex Chemistry III, 39-65. doi:10.1007/3-540-12821-2_2 | es_ES |
dc.description.references | Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Weißhoff, H. (2007). Signalling Mechanisms in Anion-Responsive Push-Pull Chromophores: The Hydrogen-Bonding, Deprotonation and Anion-Exchange Chemistry of Functionalized Azo Dyes. European Journal of Organic Chemistry, 2007(15), 2449-2458. doi:10.1002/ejoc.200601111 | es_ES |
dc.description.references | Chen, Y.-J., & Chung, W.-S. (2009). Tetrazoles and para-Substituted Phenylazo-Coupled Calix[4]arenes as Highly Sensitive Chromogenic Sensors for Ca2+. European Journal of Organic Chemistry, 2009(28), 4770-4776. doi:10.1002/ejoc.200900603 | es_ES |
dc.description.references | Lee, H. G., Lee, J.-E., & Choi, K. S. (2006). Chromoionophoric N2S2 macrocycles exhibiting mercury(II) selectivity. Inorganic Chemistry Communications, 9(6), 582-585. doi:10.1016/j.inoche.2006.03.005 | es_ES |
dc.description.references | Mahato, P., Ghosh, A., Saha, S., Mishra, S., Mishra, S. K., & Das, A. (2010). Recognition of Hg2+Using Diametrically Disubstituted Cyclam Unit. Inorganic Chemistry, 49(24), 11485-11492. doi:10.1021/ic1014797 | es_ES |
dc.description.references | Hovind, H. R. (1975). Thiazolylazo dyes and their applications in analytical chemistry. A review. The Analyst, 100(1196), 769. doi:10.1039/an9750000769 | es_ES |
dc.description.references | Lemos, V. A., Santos, E. S., Santos, M. S., & Yamaki, R. T. (2007). Thiazolylazo dyes and their application in analytical methods. Microchimica Acta, 158(3-4), 189-204. doi:10.1007/s00604-006-0704-9 | es_ES |
dc.description.references | Saeed, M. M., Bajwa, S. Z., Ansari, M. S., & Ahmed, R. (2005). Solid phase sorption of microamount of Hg(II) onto 1-(2-thiazolylazo)-2-naphthol (TAN) loaded polyurethane foam. Radiochimica Acta, 93(3). doi:10.1524/ract.93.3.177.61610 | es_ES |
dc.description.references | Starvin, A. M., & Rao, T. P. (2004). Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant. Journal of Hazardous Materials, 113(1-3), 75-79. doi:10.1016/j.jhazmat.2004.04.021 | es_ES |
dc.description.references | Wang, M., Lin, J.-M., Qu, F., Shan, X., & Chen, Z. (2004). On-capillary complexation of metal ions with 4-(2-thiazolylazo)resorcinol in capillary electrophoresis. Journal of Chromatography A, 1029(1-2), 249-254. doi:10.1016/j.chroma.2003.12.011 | es_ES |
dc.description.references | Takase, I. (2003). The use of 2-2-thiazolylazo-p-cresol to minimize the interference of Ni and Cu for the bismuth determination in alloys by hydride generation atomic absorption spectrometry. Talanta, 61(5), 597-602. doi:10.1016/s0039-9140(03)00365-5 | es_ES |
dc.description.references | Amin, A. S. (2001). SPECTROPHOTOMETRIC DETERMINATION OF CADMIUM USING THIAZOLYLAZO CHROMOGENIC REAGENTS IN THE PRESENCE OF TRITON X-100: APPLICATION IN ENVIRONMENTAL SAMPLES. Analytical Letters, 34(1), 163-176. doi:10.1081/al-100002714 | es_ES |
dc.description.references | Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a | es_ES |
dc.description.references | Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2 | es_ES |
dc.description.references | Richman, J. E., & Atkins, T. J. (1974). Nitrogen analogs of crown ethers. Journal of the American Chemical Society, 96(7), 2268-2270. doi:10.1021/ja00814a056 | es_ES |
dc.description.references | MACROCYCLIC POLYAMINES: 1,4,7,10,13,16-HEXAÄZACYCLOÖCTADECANE. (1978). Organic Syntheses, 58, 86. doi:10.15227/orgsyn.058.0086 | es_ES |
dc.description.references | Krakowiak, K. E., Bradshaw, J. S., & Zamecka-Krakowiak, D. J. (1989). Synthesis of aza-crown ethers. Chemical Reviews, 89(4), 929-972. doi:10.1021/cr00094a008 | es_ES |
dc.description.references | Higashino, K., Nakaya, T., & Ishiguro, E. (1994). Photovoltaic properties of azo compounds containing the thiazole group. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 81-88. doi:10.1016/1010-6030(94)87017-9 | es_ES |
dc.description.references | Mustroph, H., & Epperlein, J. (2010). Quantitative Beschreibung der Absorptionsmaxima von substituierten 2-Thiazol-azofarbstoffen. Zeitschrift für Chemie, 23(8), 298-299. doi:10.1002/zfch.19830230810 | es_ES |
dc.description.references | Ros-Lis, J. V., Martínez-Máñez, R., Sancenón, F., Soto, J., Spieles, M., & Rurack, K. (2008). Squaraines as Reporter Units: Insights into their Photophysics, Protonation, and Metal-Ion Coordination Behaviour. Chemistry - A European Journal, 14(32), 10101-10114. doi:10.1002/chem.200800300 | es_ES |
dc.description.references | Forlani, L., De Maria, P., & Fini, A. (1980). Electrical effects in substituted thiazoles. pK a Values of some 5-substituted 2-aminothiazoles and 5-substituted 2-NN-dimethylaminothiazoles. Journal of the Chemical Society, Perkin Transactions 2, (8), 1156. doi:10.1039/p29800001156 | es_ES |
dc.description.references | Haake, P., & Bausher, L. P. (1968). Thiazolium ions and related heteroaromatic systems. II. The acidity constants of thiazolium, oxazolium, and imidazolium ions. The Journal of Physical Chemistry, 72(6), 2213-2217. doi:10.1021/j100852a057 | es_ES |
dc.description.references | SAWICKI, E. (1957). Physical Properties of the Aminoazobenzene Dyes. IV. The Position of Proton Addition1. The Journal of Organic Chemistry, 22(4), 365-367. doi:10.1021/jo01355a004 | es_ES |
dc.description.references | Siiman, O., & Lepp, A. (1984). Protonation of the methyl orange derivative of aspartate adsorbed on colloidal silver: a surface-enhanced resonance Raman scattering and fluorescence emission study. The Journal of Physical Chemistry, 88(12), 2641-2650. doi:10.1021/j150656a043 | es_ES |
dc.description.references | WADA, H., NAKAZAWA, O., & NAKAGAWA, G. (1974). Evaluation of 1-(2-thiazolylazo)-2-hydroxy-3-naphthoic acid as a metallochromic indicator. Talanta, 21(1), 97-102. doi:10.1016/0039-9140(74)80068-8 | es_ES |
dc.description.references | Critical Stability Cosntants R. M. Smith A. E. Martell New York Vol. 2 1974 | es_ES |
dc.description.references | García-Acosta, B., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., Spieles, M., … Gil, L. (2007). Ditopic N-Crowned 4-(p-Aminophenyl)-2,6-diphenylpyridines: Implications of Macrocycle Topology on the Spectroscopic Properties, Cation Complexation, and Differential Anion Responses. Inorganic Chemistry, 46(8), 3123-3135. doi:10.1021/ic062069z | es_ES |
dc.description.references | HyperChem. 6.03 Molecular Modeling System 2000 | es_ES |
dc.description.references | (s. f.). doi:10.1021/ol062351 | es_ES |
dc.description.references | Kim, H. J., Kim, S. H., Kim, J. H., Anh, L. N., Lee, J. H., Lee, C.-H., & Kim, J. S. (2009). ICT-based Cu(II)-sensing 9,10-anthraquinonecalix[4]crown. Tetrahedron Letters, 50(23), 2782-2786. doi:10.1016/j.tetlet.2009.03.149 | es_ES |
dc.description.references | Ábalos, T., Jiménez, D., Moragues, M., Royo, S., Martínez-Máñez, R., Sancenón, F., … Gil, S. (2010). Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions. Dalton Transactions, 39(14), 3449. doi:10.1039/b921486k | es_ES |
dc.description.references | Schmittel, M., & Lin, H.-W. (2007). Quadruple-Channel Sensing: A Molecular Sensor with a Single Type of Receptor Site for Selective and Quantitative Multi-Ion Analysis. Angewandte Chemie, 119(6), 911-914. doi:10.1002/ange.200603362 | es_ES |
dc.description.references | Nolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000q | es_ES |
dc.description.references | Zhang, X., & Huang, J. (2010). Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chemical Communications, 46(33), 6042. doi:10.1039/c0cc01072c | es_ES |
dc.description.references | Zhao, Q., Liu, S., Li, F., Yi, T., & Huang, C. (2008). Multisignaling detection of Hg2+ based on a phosphorescent iridium(iii) complex. Dalton Transactions, (29), 3836. doi:10.1039/b804858d | es_ES |
dc.description.references | Tatay, S., Gaviña, P., Coronado, E., & Palomares, E. (2006). Optical Mercury Sensing Using a Benzothiazolium Hemicyanine Dye. Organic Letters, 8(17), 3857-3860. doi:10.1021/ol0615580 | es_ES |
dc.description.references | Lee, H., & Lee, S. S. (2009). Thiaoxaaza-Macrocyclic Chromoionophores as Mercury(II) Sensors: Synthesis and Color Modulation. Organic Letters, 11(6), 1393-1396. doi:10.1021/ol900241p | es_ES |
dc.description.references | Yoon, S., Miller, E. W., He, Q., Do, P. H., & Chang, C. J. (2007). A Bright and Specific Fluorescent Sensor for Mercury in Water, Cells, and Tissue. Angewandte Chemie, 119(35), 6778-6781. doi:10.1002/ange.200701785 | es_ES |
dc.description.references | Rurack, K., Resch-Genger, U., Spieles, M., & Bricks, J. L. (2000). Cation-triggered ‘switching on’ of the red/near infra-red (NIR) fluorescence of rigid fluorophore–spacer–receptor ionophores. Chemical Communications, (21), 2103-2104. doi:10.1039/b006430k | es_ES |
dc.description.references | Su Lim, C., Won Kang, D., Shun Tian, Y., Hee Han, J., Lim Hwang, H., & Rae Cho, B. (2010). Detection of mercury in fish organs with a two-photon fluorescent probe. Chemical Communications, 46(14), 2388. doi:10.1039/b922305c | es_ES |
dc.description.references | Ros-Lis, J. V., Martínez-Máñez, R., Rurack, K., Sancenón, F., Soto, J., & Spieles, M. (2004). Highly Selective Chromogenic Signaling of Hg2+in Aqueous Media at Nanomolar Levels Employing a Squaraine-Based Reporter. Inorganic Chemistry, 43(17), 5183-5185. doi:10.1021/ic049422q | es_ES |
dc.description.references | Descalzo, A. B., Martínez-Máñez, R., Radeglia, R., Rurack, K., & Soto, J. (2003). Coupling Selectivity with Sensitivity in an Integrated Chemosensor Framework: Design of a Hg2+-Responsive Probe, Operating above 500 nm. Journal of the American Chemical Society, 125(12), 3418-3419. doi:10.1021/ja0290779 | es_ES |
dc.description.references | Yuan, M., Li, Y., Li, J., Li, C., Liu, X., Lv, J., … Zhu, D. (2007). A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule. Organic Letters, 9(12), 2313-2316. doi:10.1021/ol0706399 | es_ES |
dc.description.references | Zhu, M., Yuan, M., Liu, X., Xu, J., Lv, J., Huang, C., … Zhu, D. (2008). Visible Near-Infrared Chemosensor for Mercury Ion. Organic Letters, 10(7), 1481-1484. doi:10.1021/ol800197t | es_ES |
dc.description.references | Tian, M., & Ihmels, H. (2009). Selective ratiometric detection of mercury(ii) ions in water with an acridizinium-based fluorescent probe. Chemical Communications, (22), 3175. doi:10.1039/b821830g | es_ES |
dc.description.references | Tian, M., Ihmels, H., & Benner, K. (2010). Selective detection of Hg2+ in the microenvironment of double-stranded DNA with an intercalator crown-ether conjugate. Chemical Communications, 46(31), 5719. doi:10.1039/c002727h | es_ES |
dc.description.references | Wang, H.-H., Xue, L., Qian, Y.-Y., & Jiang, H. (2010). Novel Ratiometric Fluorescent Sensor for Silver Ions. Organic Letters, 12(2), 292-295. doi:10.1021/ol902624h | es_ES |
dc.description.references | Atilgan, S., Kutuk, I., & Ozdemir, T. (2010). A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II). Tetrahedron Letters, 51(6), 892-894. doi:10.1016/j.tetlet.2009.12.025 | es_ES |
dc.description.references | Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Soto, J., Benito, Á., & García-Breijo, E. (2005). Multi-Channel Receptors and Their Relation to Guest Chemosensing and Reconfigurable Molecular Logic Gates. European Journal of Inorganic Chemistry, 2005(12), 2393-2403. doi:10.1002/ejic.200400844 | es_ES |
dc.description.references | Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098-3100. doi:10.1103/physreva.38.3098 | es_ES |
dc.description.references | Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096 | es_ES |
dc.description.references | Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799 | es_ES |
dc.description.references | Gaussian 09 2009 | es_ES |
dc.description.references | Casida, M. E., Jamorski, C., Casida, K. C., & Salahub, D. R. (1998). Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. The Journal of Chemical Physics, 108(11), 4439-4449. doi:10.1063/1.475855 | es_ES |
dc.description.references | Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation Models. Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009 | es_ES |