- -

Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alegre Sanahuja, Juan es_ES
dc.contributor.author Camacho Vidal, Francisco Javier es_ES
dc.contributor.author Cortés López, Juan Carlos es_ES
dc.contributor.author Santonja, Francisco-José es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2015-05-20T11:43:35Z
dc.date.available 2015-05-20T11:43:35Z
dc.date.issued 2014-10-28
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/50558
dc.description.abstract [EN] In the last years the number of malware Apps that the users download to their devices has risen. In this paper, we propose an agentbased model to quantify the Android malware infection evolution, modeling the behavior of the users and the different markets where the users may download Apps. The model predicts the number of infected smartphones depending on the type of malware. Additionally, we will estimate the cost that the users should afford when the malware is in their devices. We will be able to analyze which part is more critical: the users, giving indiscriminate permissions to the Apps or not protecting their devices with antivirus software, or the Android platform, due to the vulnerabilities of the Android devices that permit their rooted. We focus on the community of Valencia, Spain, although the obtained results can be extrapolated to other places where the number of Android smartphones remains fairly stable. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Econom´ıa y Competitividad Grant MTM2013-41765-P.
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/623436
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Alegre Sanahuja, J.; Camacho Vidal, FJ.; Cortés López, JC.; Santonja, F.; Villanueva Micó, RJ. (2014). Agent-Based Model to Study and Quantify the Evolution Dynamics of Android Malware Infection. Abstract and Applied Analysis. 2014:1-10. https://doi.org/10.1155/2014/623436 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org//10.1155/2014/623436 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 277059
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Di Cerbo, F., Girardello, A., Michahelles, F., & Voronkova, S. (2011). Detection of Malicious Applications on Android OS. Lecture Notes in Computer Science, 138-149. doi:10.1007/978-3-642-19376-7_12 es_ES
dc.description.references Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., & Weiss, Y. (2011). «Andromaly»: a behavioral malware detection framework for android devices. Journal of Intelligent Information Systems, 38(1), 161-190. doi:10.1007/s10844-010-0148-x es_ES
dc.description.references Bose, A., & Shin, K. G. (2011). Agent-based modeling of malware dynamics in heterogeneous environments. Security and Communication Networks, 6(12), 1576-1589. doi:10.1002/sec.298 es_ES
dc.description.references Wang, P., Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A.-L. (2009). Understanding the Spreading Patterns of Mobile Phone Viruses. Science, 324(5930), 1071-1076. doi:10.1126/science.1167053 es_ES
dc.description.references Mylonas, A., Kastania, A., & Gritzalis, D. (2013). Delegate the smartphone user? Security awareness in smartphone platforms. Computers & Security, 34, 47-66. doi:10.1016/j.cose.2012.11.004 es_ES
dc.description.references Hoare, A., Regan, D. G., & Wilson, D. P. (2008). Sampling and sensitivity analyses tools (SaSAT) for computational modelling. Theoretical Biology and Medical Modelling, 5(1), 4. doi:10.1186/1742-4682-5-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem