- -

On the classification of exceptional planar functions over F_p

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the classification of exceptional planar functions over F_p

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernando, Fernando es_ES
dc.contributor.author McGuire, Gary es_ES
dc.contributor.author Monserrat Delpalillo, Francisco José es_ES
dc.date.accessioned 2015-05-21T09:06:47Z
dc.date.available 2015-05-21T09:06:47Z
dc.date.issued 2014-12
dc.identifier.issn 0046-5755
dc.identifier.uri http://hdl.handle.net/10251/50613
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10711-013-9926-2 es_ES
dc.description.abstract We will present many strong partial results towards a classification of exceptional planar/PN monomial functions on finite fields. The techniques we use are the Weil bound, Bézout’s theorem, and Bertini’s theorem. es_ES
dc.description.sponsorship This research was partially supported by MINECO under Grant No. MTM2012-36917-C03-03 (Spain). Research of the second author supported by the Claude Shannon Institute, Science Foundation Ireland Grant 06/MI/006. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Geometriae Dedicata es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Absolutely irreducible polynomial es_ES
dc.subject Planar function es_ES
dc.subject Perfect nonlinear function es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the classification of exceptional planar functions over F_p es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10711-013-9926-2
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36917-C03-03/ES/SINGULARIDADES E INFORMACION. APLICACIONES A CAMPOS VECTORIALES Y CODIGOS CORRECTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SFI/Claude Shannon Institute for Mathematics and Communications/06%2FMI%2F006/EU/On the Classification of Exceptional Planar Functions over {F}_{p}/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Hernando, F.; Mcguire, G.; Monserrat Delpalillo, FJ. (2014). On the classification of exceptional planar functions over F_p. Geometriae Dedicata. 173(1):1-35. https://doi.org/10.1007/s10711-013-9926-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007/s10711-013-9926-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 35 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 173 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 278486
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder European Commission
dc.description.references Beauville, A.: Complex Algebraic Surfaces, London Math. Society, Student Texts 34. Cambridge University Press, Cambridge (1996) es_ES
dc.description.references Bodin, A.: Reducibility of rational functions in several variables. Israel J. Math. 164, 333–347 (2008) es_ES
dc.description.references Campillo, A., Gonzalez-Sprinberg, G., Monserrat, F.: Configurations of infinitely near points. Sao Paulo J. Math. Sci. 3(1), 115–160 (2009) es_ES
dc.description.references Coulter, R., Matthews, R.: Planar functions and planes of Lenz–Barlotti class II. Des. Codes Cryptogr. 10, 167–184 (1997) es_ES
dc.description.references Coulter, R.: Private communication pointed out by R. Coulter in a private communication es_ES
dc.description.references Dembowski, P., Ostrom, T.G.: Planes of order $$n$$ n with collineation groups of order $$n^2$$ n 2 . Math. Z. 103, 239–258 (1968) es_ES
dc.description.references Eisenbud, D., Harris, J.: The Geometry of Schemes, Grad. Texts Math., vol. 197. Springer, New York (1999) es_ES
dc.description.references Fulton, W.: Algebraic Curves. Benjamin, New York (1969) es_ES
dc.description.references Guralnick, R., Rosenberg, J., Zieve, M.: A new family of exceptional polynomials in characteristic two. Ann. Math. 172, 1361–1390 (2010) es_ES
dc.description.references Hartshorne, R.: Algebraic Geometry, Grad. Texts Math., vol. 52. Springer, New York (1977) es_ES
dc.description.references Hernando, F., McGuire, G.: Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions. J. Algebra 343, 78–92 (2011) es_ES
dc.description.references Hernando, F., McGuire, G.: Proof of a conjecture of Segre and Bartocci on monomial hyperovals in projective planes. Des. Codes Cryptogr. 65(3), 275–289 (2012) es_ES
dc.description.references Iitaka, S.: Algebraic Geometry. Grad. Texts Math., vol. 76. Springer, New York (1982) es_ES
dc.description.references Janwa, H., McGuire, G., Wilson, R.M.: Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2). J. Algebra 178(2), 665–676 (1995) es_ES
dc.description.references Kleiman, S.L.: Bertini and his two fundamental theorems. Studies in the history of modern mathematics. III. Rend. Circ. Mat. Palermo (2) Suppl. no. 55, 9–37 (1998) es_ES
dc.description.references Kopparty, S., Yekhanin, S.: Detecting rational points on hypersurfaces over finite fields. In: 23rd Annual IEEE Conference Computational Complexity 2008, CCC ’08, pp. 311–320 (2008) es_ES
dc.description.references Leducq, E.: Functions which are PN on infinitely many extensions of $$F_p, p$$ F p , p odd. http://arxiv.org/abs/1006.2610 es_ES
dc.description.references Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Revision of the 1986 first edition. Cambridge University Press, Cambridge, xii+416 pp (1994) es_ES
dc.description.references Nyberg, K., Knudsen, L.R.: Provable Security Against Differential Cryptanalysis, Advances in Cryptology CRYPTO92, LNCS 740. Springer, Berlin (1992) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem