- -

Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Egorova, Vera es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2015-05-22T10:30:04Z
dc.date.available 2015-05-22T10:30:04Z
dc.date.issued 2014-04
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/50689
dc.description.abstract [EN] This paper presents an explicit finite-difference method for nonlinear partial differential equation appearing as a transformed Black-Scholes equation for American put option under logarithmic front fixing transformation. Numerical analysis of the method is provided. The method preserves positivity and monotonicity of the numerical solution. Consistency and stability properties of the scheme are studied. Explicit calculations avoid iterative algorithms for solving nonlinear systems. Theoretical results are confirmed by numerical experiments. Comparison with other approaches shows that the proposed method is accurate and competitive. es_ES
dc.description.sponsorship This paper has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance). en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/146745
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.description.bibliographicCitation Company Rossi, R.; Egorova, V.; Jódar Sánchez, LA. (2014). Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing. Abstract and Applied Analysis. 2014:1-9. https://doi.org/10.1155/2014/146745 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/146745 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 265890
dc.contributor.funder European Commission
dc.description.references Feng, L., Linetsky, V., Luis Morales, J., & Nocedal, J. (2011). On the solution of complementarity problems arising in American options pricing. Optimization Methods and Software, 26(4-5), 813-825. doi:10.1080/10556788.2010.514341 es_ES
dc.description.references Van Moerbeke, P. (1976). On optimal stopping and free boundary problems. Archive for Rational Mechanics and Analysis, 60(2), 101-148. doi:10.1007/bf00250676 es_ES
dc.description.references GESKE, R., & JOHNSON, H. E. (1984). The American Put Option Valued Analytically. The Journal of Finance, 39(5), 1511-1524. doi:10.1111/j.1540-6261.1984.tb04921.x es_ES
dc.description.references BARONE-ADESI, G., & WHALEY, R. E. (1987). Efficient Analytic Approximation of American Option Values. The Journal of Finance, 42(2), 301-320. doi:10.1111/j.1540-6261.1987.tb02569.x es_ES
dc.description.references Ju, N. (1998). Pricing by American Option by Approximating its Early Exercise Boundary as a Multipiece Exponential Function. Review of Financial Studies, 11(3), 627-646. doi:10.1093/rfs/11.3.627 es_ES
dc.description.references Jaillet, P., Lamberton, D., & Lapeyre, B. (1990). Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae, 21(3), 263-289. doi:10.1007/bf00047211 es_ES
dc.description.references Hull, J., & White, A. (1990). Valuing Derivative Securities Using the Explicit Finite Difference Method. The Journal of Financial and Quantitative Analysis, 25(1), 87. doi:10.2307/2330889 es_ES
dc.description.references Forsyth, P. A., & Vetzal, K. R. (2002). Quadratic Convergence for Valuing American Options Using a Penalty Method. SIAM Journal on Scientific Computing, 23(6), 2095-2122. doi:10.1137/s1064827500382324 es_ES
dc.description.references Tangman, D. Y., Gopaul, A., & Bhuruth, M. (2008). A fast high-order finite difference algorithm for pricing American options. Journal of Computational and Applied Mathematics, 222(1), 17-29. doi:10.1016/j.cam.2007.10.044 es_ES
dc.description.references Zhu, S.-P., & Chen, W.-T. (2011). A predictor–corrector scheme based on the ADI method for pricing American puts with stochastic volatility. Computers & Mathematics with Applications, 62(1), 1-26. doi:10.1016/j.camwa.2011.03.101 es_ES
dc.description.references Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441 es_ES
dc.description.references Kim, I. J. (1990). The Analytic Valuation of American Options. Review of Financial Studies, 3(4), 547-572. doi:10.1093/rfs/3.4.547 es_ES
dc.description.references Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921 es_ES
dc.description.references Company, R., Jódar, L., & Pintos, J.-R. (2012). A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets. Mathematics and Computers in Simulation, 82(10), 1972-1985. doi:10.1016/j.matcom.2010.04.026 es_ES
dc.description.references Panini, R., & Srivastav, R. P. (2004). Option pricing with Mellin transnforms. Mathematical and Computer Modelling, 40(1-2), 43-56. doi:10.1016/j.mcm.2004.07.008 es_ES
dc.description.references Kuske, R. A., & Keller, J. B. (1998). Optimal exercise boundary for an American put option. Applied Mathematical Finance, 5(2), 107-116. doi:10.1080/135048698334673 es_ES
dc.description.references Ikonen, S., & Toivanen, J. (2004). Operator splitting methods for American option pricing. Applied Mathematics Letters, 17(7), 809-814. doi:10.1016/j.aml.2004.06.010 es_ES
dc.description.references Han, H., & Wu, X. (2003). A Fast Numerical Method for the Black--Scholes Equation of American Options. SIAM Journal on Numerical Analysis, 41(6), 2081-2095. doi:10.1137/s0036142901390238 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem