Mostrar el registro sencillo del ítem
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Egorova, Vera | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2015-05-22T10:30:04Z | |
dc.date.available | 2015-05-22T10:30:04Z | |
dc.date.issued | 2014-04 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/50689 | |
dc.description.abstract | [EN] This paper presents an explicit finite-difference method for nonlinear partial differential equation appearing as a transformed Black-Scholes equation for American put option under logarithmic front fixing transformation. Numerical analysis of the method is provided. The method preserves positivity and monotonicity of the numerical solution. Consistency and stability properties of the scheme are studied. Explicit calculations avoid iterative algorithms for solving nonlinear systems. Theoretical results are confirmed by numerical experiments. Comparison with other approaches shows that the proposed method is accurate and competitive. | es_ES |
dc.description.sponsorship | This paper has been partially supported by the European Union in the FP7-PEOPLE-2012-ITN Program under Grant Agreement no. 304617 (FP7 Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Computational Finance). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/146745 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/304617/EU/Novel Methods in Computational Finance/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Company Rossi, R.; Egorova, V.; Jódar Sánchez, LA. (2014). Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing. Abstract and Applied Analysis. 2014:1-9. https://doi.org/10.1155/2014/146745 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2014/146745 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 265890 | |
dc.contributor.funder | European Commission | |
dc.description.references | Feng, L., Linetsky, V., Luis Morales, J., & Nocedal, J. (2011). On the solution of complementarity problems arising in American options pricing. Optimization Methods and Software, 26(4-5), 813-825. doi:10.1080/10556788.2010.514341 | es_ES |
dc.description.references | Van Moerbeke, P. (1976). On optimal stopping and free boundary problems. Archive for Rational Mechanics and Analysis, 60(2), 101-148. doi:10.1007/bf00250676 | es_ES |
dc.description.references | GESKE, R., & JOHNSON, H. E. (1984). The American Put Option Valued Analytically. The Journal of Finance, 39(5), 1511-1524. doi:10.1111/j.1540-6261.1984.tb04921.x | es_ES |
dc.description.references | BARONE-ADESI, G., & WHALEY, R. E. (1987). Efficient Analytic Approximation of American Option Values. The Journal of Finance, 42(2), 301-320. doi:10.1111/j.1540-6261.1987.tb02569.x | es_ES |
dc.description.references | Ju, N. (1998). Pricing by American Option by Approximating its Early Exercise Boundary as a Multipiece Exponential Function. Review of Financial Studies, 11(3), 627-646. doi:10.1093/rfs/11.3.627 | es_ES |
dc.description.references | Jaillet, P., Lamberton, D., & Lapeyre, B. (1990). Variational inequalities and the pricing of American options. Acta Applicandae Mathematicae, 21(3), 263-289. doi:10.1007/bf00047211 | es_ES |
dc.description.references | Hull, J., & White, A. (1990). Valuing Derivative Securities Using the Explicit Finite Difference Method. The Journal of Financial and Quantitative Analysis, 25(1), 87. doi:10.2307/2330889 | es_ES |
dc.description.references | Forsyth, P. A., & Vetzal, K. R. (2002). Quadratic Convergence for Valuing American Options Using a Penalty Method. SIAM Journal on Scientific Computing, 23(6), 2095-2122. doi:10.1137/s1064827500382324 | es_ES |
dc.description.references | Tangman, D. Y., Gopaul, A., & Bhuruth, M. (2008). A fast high-order finite difference algorithm for pricing American options. Journal of Computational and Applied Mathematics, 222(1), 17-29. doi:10.1016/j.cam.2007.10.044 | es_ES |
dc.description.references | Zhu, S.-P., & Chen, W.-T. (2011). A predictor–corrector scheme based on the ADI method for pricing American puts with stochastic volatility. Computers & Mathematics with Applications, 62(1), 1-26. doi:10.1016/j.camwa.2011.03.101 | es_ES |
dc.description.references | Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441 | es_ES |
dc.description.references | Kim, I. J. (1990). The Analytic Valuation of American Options. Review of Financial Studies, 3(4), 547-572. doi:10.1093/rfs/3.4.547 | es_ES |
dc.description.references | Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921 | es_ES |
dc.description.references | Company, R., Jódar, L., & Pintos, J.-R. (2012). A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets. Mathematics and Computers in Simulation, 82(10), 1972-1985. doi:10.1016/j.matcom.2010.04.026 | es_ES |
dc.description.references | Panini, R., & Srivastav, R. P. (2004). Option pricing with Mellin transnforms. Mathematical and Computer Modelling, 40(1-2), 43-56. doi:10.1016/j.mcm.2004.07.008 | es_ES |
dc.description.references | Kuske, R. A., & Keller, J. B. (1998). Optimal exercise boundary for an American put option. Applied Mathematical Finance, 5(2), 107-116. doi:10.1080/135048698334673 | es_ES |
dc.description.references | Ikonen, S., & Toivanen, J. (2004). Operator splitting methods for American option pricing. Applied Mathematics Letters, 17(7), 809-814. doi:10.1016/j.aml.2004.06.010 | es_ES |
dc.description.references | Han, H., & Wu, X. (2003). A Fast Numerical Method for the Black--Scholes Equation of American Options. SIAM Journal on Numerical Analysis, 41(6), 2081-2095. doi:10.1137/s0036142901390238 | es_ES |