- -

Pixel classification methods for identifying and quantifying leaf surface injury from digital images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pixel classification methods for identifying and quantifying leaf surface injury from digital images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Opstad Kruse, Ole Mathis es_ES
dc.contributor.author Prats Montalbán, José Manuel es_ES
dc.contributor.author Indahl, Ulf Geir es_ES
dc.contributor.author Kvaal, Knut es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.contributor.author Futsaether, Cecilia Marie es_ES
dc.date.accessioned 2015-05-26T11:00:24Z
dc.date.available 2015-05-26T11:00:24Z
dc.date.issued 2014-10
dc.identifier.issn 0168-1699
dc.identifier.uri http://hdl.handle.net/10251/50765
dc.description.abstract Plants exposed to stress due to pollution, disease or nutrient deficiency often develop visible symptoms on leaves such as spots, colour changes and necrotic regions. Early symptom detection is important for precision agriculture, environmental monitoring using bio-indicators and quality assessment of leafy vegetables. Leaf injury is usually assessed by visual inspection, which is labour-intensive and to a consid- erable extent subjective. In this study, methods for classifying individual pixels as healthy or injured from images of clover leaves exposed to the air pollutant ozone were tested and compared. RGB images of the leaves were acquired under controlled conditions in a laboratory using a standard digital SLR camera. Different feature vectors were extracted from the images by including different colour and texture (spa- tial) information. Four approaches to classification were evaluated: (1) Fit to a Pattern Multivariate Image Analysis (FPM) combined with T2 statistics (FPM-T2) or (2) Residual Sum of Squares statistics (FPM-RSS), (3) linear discriminant analysis (LDA) and (4) K-means clustering. The predicted leaf pixel classifications were trained from and compared to manually segmented images to evaluate classification performance. The LDA classifier outperformed the three other approaches in pixel identification with significantly higher accuracy, precision, true positive rate and F-score and significantly lower false positive rate and computation time. A feature vector of single pixel colour channel intensities was sufficient for capturing the information relevant for pixel identification. Including neighbourhood pixel information in the feature vector did not improve performance, but significantly increased the computation time. The LDA classifier was robust with 95% mean accuracy, 83% mean true positive rate and 2% mean false positive rate, indicating that it has potential for real-time applications. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Classification es_ES
dc.subject Feature extraction es_ES
dc.subject Fit to a pattern model approach (FPM) es_ES
dc.subject Linear discriminant analysis (LDA) es_ES
dc.subject K-means clustering es_ES
dc.subject Multivariate image analysis (MIA) es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Pixel classification methods for identifying and quantifying leaf surface injury from digital images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2014.07.010
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de Ingeniería Estadística Multivariante es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Opstad Kruse, OM.; Prats Montalbán, JM.; Indahl, UG.; Kvaal, K.; Ferrer Riquelme, AJ.; Futsaether, CM. (2014). Pixel classification methods for identifying and quantifying leaf surface injury from digital images. Computers and Electronics in Agriculture. 108:155-165. doi:10.1016/j.compag.2014.07.010 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.compag.2014.07.010 es_ES
dc.description.upvformatpinicio 155 es_ES
dc.description.upvformatpfin 165 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.relation.senia 269003


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem