- -

Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sáez Silvestre, Carlos es_ES
dc.contributor.author Pereira Rodrigues, Pedro es_ES
dc.contributor.author Gama, João es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.contributor.author García Gómez, Juan Miguel es_ES
dc.date.accessioned 2015-05-26T11:16:12Z
dc.date.available 2015-05-26T11:16:12Z
dc.date.issued 2014-09-02
dc.identifier.issn 1384-5810
dc.identifier.uri http://hdl.handle.net/10251/50768
dc.description The final publication is available at Springer via http://dx.doi.org/DOI 10.1007/s10618-014-0378-6. Published online. es_ES
dc.description.abstract Knowledge discovery on biomedical data can be based on on-line, data-stream analyses, or using retrospective, timestamped, off-line datasets. In both cases, changes in the processes that generate data or in their quality features through time may hinder either the knowledge discovery process or the generalization of past knowledge. These problems can be seen as a lack of data temporal stability. This work establishes the temporal stability as a data quality dimension and proposes new methods for its assessment based on a probabilistic framework. Concretely, methods are proposed for (1) monitoring changes, and (2) characterizing changes, trends and detecting temporal subgroups. First, a probabilistic change detection algorithm is proposed based on the Statistical Process Control of the posterior Beta distribution of the Jensen–Shannon distance, with a memoryless forgetting mechanism. This algorithm (PDF-SPC) classifies the degree of current change in three states: In-Control, Warning, and Out-of-Control. Second, a novel method is proposed to visualize and characterize the temporal changes of data based on the projection of a non-parametric information-geometric statistical manifold of time windows. This projection facilitates the exploration of temporal trends using the proposed IGT-plot and, by means of unsupervised learning methods, discovering conceptually-related temporal subgroups. Methods are evaluated using real and simulated data based on the National Hospital Discharge Survey (NHDS) dataset. es_ES
dc.description.sponsorship The work by C Saez has been supported by an Erasmus Lifelong Learning Programme 2013 Grant. This work has been supported by own IBIME funds. The authors thank Dr. Gregor Stiglic, from the Univeristy of Maribor, Slovenia, for his support on the NHDS data. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Data Mining and Knowledge Discovery es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Data quality es_ES
dc.subject Change detection es_ES
dc.subject Information theory es_ES
dc.subject Information geometry es_ES
dc.subject Visual analytics es_ES
dc.subject Biomedical data es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10618-014-0378-6
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Sáez Silvestre, C.; Pereira Rodrigues, P.; Gama, J.; Robles Viejo, M.; García Gómez, JM. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery. 28:1-1. doi:10.1007/s10618-014-0378-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007/s10618-014-0378-6 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 1 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.relation.senia 269167
dc.contributor.funder European Commission es_ES
dc.contributor.funder Erasmus+ es_ES
dc.description.references Aggarwal C (2003) A framework for diagnosing changes in evolving data streams. In Proceedings of the International Conference on Management of Data ACM SIGMOD, pp 575–586 es_ES
dc.description.references Amari SI, Nagaoka H (2007) Methods of information geometry. American Mathematical Society, Providence, RI es_ES
dc.description.references Arias E (2014) United states life tables, 2009. Natl Vital Statist Rep 62(7): 1–63 es_ES
dc.description.references Aspden P, Corrigan JM, Wolcott J, Erickson SM (2004) Patient safety: achieving a new standard for care. Committee on data standards for patient safety. The National Academies Press, Washington, DC es_ES
dc.description.references Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and application. Prentice-Hall Inc, Upper Saddle River, NJ es_ES
dc.description.references Borg I, Groenen PJF (2010) Modern multidimensional scaling: theory and applications. Springer, Berlin es_ES
dc.description.references Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the Kernel approach with S-plus illustrations (Oxford statistical science series). Oxford University Press, Oxford es_ES
dc.description.references Brandes U, Pich C (2007) Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann M, Wagner D (eds) Graph drawing. Lecture notes in computer science, vol 4372. Springer, Berlin, pp 42–53 es_ES
dc.description.references Brockwell P, Davis R (2009) Time series: theory and methods., Springer series in statisticsSpringer, Berlin es_ES
dc.description.references Cesario SK (2002) The “Christmas Effect” and other biometeorologic influences on childbearing and the health of women. J Obstet Gynecol Neonatal Nurs 31(5):526–535 es_ES
dc.description.references Chakrabarti K, Garofalakis M, Rastogi R, Shim K (2001) Approximate query processing using wavelets. VLDB J 10(2–3):199–223 es_ES
dc.description.references Cruz-Correia RJ, Pereira Rodrigues P, Freitas A, Canario Almeida F, Chen R, Costa-Pereira A (2010) Data quality and integration issues in electronic health records. Information discovery on electronic health records, pp 55–96 es_ES
dc.description.references Csiszár I (1967) Information-type measures of difference of probability distributions and indirect observations. Studia Sci Math Hungar 2:299–318 es_ES
dc.description.references Dasu T, Krishnan S, Lin D, Venkatasubramanian S, Yi K (2009) Change (detection) you can believe. In: Finding distributional shifts in data streams. In: Proceedings of the 8th international symposium on intelligent data analysis: advances in intelligent data analysis VIII, IDA ’09. Springer, Berlin, pp 21–34 es_ES
dc.description.references Endres D, Schindelin J (2003) A new metric for probability distributions. IEEE Trans Inform Theory 49(7):1858–1860 es_ES
dc.description.references Gama J, Gaber MM (2007) Learning from data streams: processing techniques in sensor networks. Springer, Berlin es_ES
dc.description.references Gama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Bazzan A, Labidi S (eds) Advances in artificial intelligence—SBIA 2004., Lecture notes in computer scienceSpringer, Berlin, pp 286–295 es_ES
dc.description.references Gama J (2010) Knowledge discovery from data streams, 1st edn. Chapman & Hall, London es_ES
dc.description.references Gehrke J, Korn F, Srivastava D (2001) On computing correlated aggregates over continual data streams. SIGMOD Rec 30(2):13–24 es_ES
dc.description.references Guha S, Shim K, Woo J (2004) Rehist: relative error histogram construction algorithms. In: Proceedings of the thirtieth international conference on very large data bases VLDB, pp 300–311 es_ES
dc.description.references Han J, Kamber M, Pei J (2012) Data mining: concepts and techniques. Morgan Kaufmann, Elsevier, Burlington, MA es_ES
dc.description.references Howden LM, Meyer JA, (2011) Age and sex composition. 2010 Census Briefs US Department of Commerce. Economics and Statistics Administration, US Census Bureau es_ES
dc.description.references Hrovat G, Stiglic G, Kokol P, Ojstersek M (2014) Contrasting temporal trend discovery for large healthcare databases. Comput Methods Program Biomed 113(1):251–257 es_ES
dc.description.references Keim DA (2000) Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans Vis Comput Graph 6(1):59–78 es_ES
dc.description.references Kifer D, Ben-David S, Gehrke J (2004) Detecting change in data streams. In: Proceedings of the thirtieth international conference on Very large data bases, VLDB Endowment, VLDB ’04, vol 30, pp 180–191 es_ES
dc.description.references Klinkenberg R, Renz I (1998) Adaptive information filtering: Learning in the presence of concept drifts. In: Workshop notes of the ICML/AAAI-98 workshop learning for text categorization. AAAI Press, Menlo Park, pp 33–40 es_ES
dc.description.references Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biolog Cybern 43(1):59–69 es_ES
dc.description.references Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inform Theory 37:145–151 es_ES
dc.description.references Mitchell TM, Caruana R, Freitag D, McDermott J, Zabowski D (1994) Experience with a learning personal assistant. Commun ACM 37(7):80–91 es_ES
dc.description.references Mouss H, Mouss D, Mouss N, Sefouhi L (2004) Test of page-hinckley, an approach for fault detection in an agro-alimentary production system. In: Proceedings of the 5th Asian Control Conference, vol 2, pp 815–818 es_ES
dc.description.references National Research Council (2011) Explaining different levels of longevity in high-income countries. The National Academies Press, Washington, DC es_ES
dc.description.references NHDS (2010) United states department of health and human services. Centers for disease control and prevention. National center for health statistics. National hospital discharge survey codebook es_ES
dc.description.references NHDS (2014) National Center for Health Statistics, National Hospital Discharge Survey (NHDS) data, US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, Maryland. http://www.cdc.gov/nchs/nhds.htm es_ES
dc.description.references Papadimitriou S, Sun J, Faloutsos C (2005) Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st international conference on very large data bases, VLDB endowment, VLDB ’05, pp 697–708 es_ES
dc.description.references Parzen E (1962) On estimation of a probability density function and mode. Ann Math Statist 33(3):1065–1076 es_ES
dc.description.references Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York es_ES
dc.description.references Rodrigues P, Correia R (2013) Streaming virtual patient records. In: Krempl G, Zliobaite I, Wang Y, Forman G (eds) Real-world challenges for data stream mining. University Magdeburg, Otto-von-Guericke, pp 34–37 es_ES
dc.description.references Rodrigues P, Gama J, Pedroso J (2008) Hierarchical clustering of time-series data streams. IEEE Trans Knowl Data Eng 20(5):615–627 es_ES
dc.description.references Rodrigues PP, Gama Ja (2010) A simple dense pixel visualization for mobile sensor data mining. In: Proceedings of the second international conference on knowledge discovery from sensor data, sensor-KDD’08. Springer, Berlin, pp 175–189 es_ES
dc.description.references Rodrigues PP, Gama J, Sebastiã o R (2010) Memoryless fading windows in ubiquitous settings. In Proceedings of ubiquitous data mining (UDM) workshop in conjunction with the 19th european conference on artificial intelligence—ECAI 2010, pp 27–32 es_ES
dc.description.references Rodrigues PP, Sebastiã o R, Santos CC (2011) Improving cardiotocography monitoring: a memory-less stream learning approach. In: Proceedings of the learning from medical data streams workshop. Bled, Slovenia es_ES
dc.description.references Rubner Y, Tomasi C, Guibas L (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vision 40(2):99–121 es_ES
dc.description.references Sebastião R, Gama J (2009) A study on change detection methods. In: 4th Portuguese conference on artificial intelligence es_ES
dc.description.references Sebastião R, Gama J, Rodrigues P, Bernardes J (2010) Monitoring incremental histogram distribution for change detection in data streams. In: Gaber M, Vatsavai R, Omitaomu O, Gama J, Chawla N, Ganguly A (eds) Knowledge discovery from sensor data, vol 5840., Lecture notes in computer science. Springer, Berlin, pp 25–42 es_ES
dc.description.references Sebastião R, Silva M, Rabiço R, Gama J, Mendonça T (2013) Real-time algorithm for changes detection in depth of anesthesia signals. Evol Syst 4(1):3–12 es_ES
dc.description.references Sáez C, Martínez-Miranda J, Robles M, García-Gómez JM (2012) O rganizing data quality assessment of shifting biomedical data. Stud Health Technol Inform 180:721–725 es_ES
dc.description.references Sáez C, Robles M, García-Gómez JM (2013) Comparative study of probability distribution distances to define a metric for the stability of multi-source biomedical research data. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, pp 3226–3229 es_ES
dc.description.references Sáez C, Robles M, García-Gómez JM (2014) Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statist Method Med Res (forthcoming) es_ES
dc.description.references Shewhart WA, Deming WE (1939) Statistical method from the viewpoint of quality control. Graduate School of the Department of Agriculture, Washington, DC es_ES
dc.description.references Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29(1–2):171–182 es_ES
dc.description.references Solberg LI, Engebretson KI, Sperl-Hillen JM, Hroscikoski MC, O’Connor PJ (2006) Are claims data accurate enough to identify patients for performance measures or quality improvement? the case of diabetes, heart disease, and depression. Am J Med Qual 21(4):238–245 es_ES
dc.description.references Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) monic: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACm SIGKDD international conference on knowledge discovery and data mining, KDD ’06. ACm, New York, NY, pp 706–711 es_ES
dc.description.references Stiglic G, Kokol P (2011) Interpretability of sudden concept drift in medical informatics domain. In Proceedings of the 2010 IEEE international conference on data mining workshops, pp 609–613 es_ES
dc.description.references Torgerson W (1952) Multidimensional scaling: I theory and method. Psychometrika 17(4):401–419 es_ES
dc.description.references Wang RY, Strong DM (1996) Beyond accuracy: what data quality means to data consumers. J Manage Inform Syst 12(4):5–33 es_ES
dc.description.references Weiskopf NG, Weng C (2013) M ethods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc 20(1):144–151 es_ES
dc.description.references Wellings K, Macdowall W, Catchpole M, Goodrich J (1999) Seasonal variations in sexual activity and their implications for sexual health promotion. J R Soc Med 92(2):60–64 es_ES
dc.description.references Westgard JO, Barry PL (2010) Basic QC practices: training in statistical quality control for medical laboratories. Westgard Quality Corporation, Madison, WI es_ES
dc.description.references Widmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–101 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem