- -

A Comparative Study of Different Methodologies for Fault Diagnosis in Multivariate Quality Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Comparative Study of Different Methodologies for Fault Diagnosis in Multivariate Quality Control

Mostrar el registro completo del ítem

Vidal Puig, S.; Ferrer, A. (2014). A Comparative Study of Different Methodologies for Fault Diagnosis in Multivariate Quality Control. Communications in Statistics - Simulation and Computation. 43(5):986-1005. doi:10.1080/03610918.2012.720745

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50782

Ficheros en el ítem

Metadatos del ítem

Título: A Comparative Study of Different Methodologies for Fault Diagnosis in Multivariate Quality Control
Autor: Vidal Puig, Santiago Ferrer, Alberto
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
Different methodologies for fault diagnosis in multivariate quality control have been proposed in recent years. These methods work in the space of the original measured variables and have performed reasonably well when ...[+]
Palabras clave: Fault Diagnosis, , Hotelling's T2 , Multivariate quality control
Derechos de uso: Reserva de todos los derechos
Fuente:
Communications in Statistics - Simulation and Computation. (issn: 0361-0918 )
DOI: 10.1080/03610918.2012.720745
Editorial:
Taylor & Francis Inc.
Versión del editor: http://dx.doi.org/10.1080/03610918.2012.720745
Tipo: Artículo

References

Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003

Doganaksoy, N., Faltin, F. W., & Tucker, W. T. (1991). Identification of out of control quality characteristics in a multivariate manufacturing environment. Communications in Statistics - Theory and Methods, 20(9), 2775-2790. doi:10.1080/03610929108830667

Fuchs, C., & Benjamini, Y. (1994). Multivariate Profile Charts for Statistical Process Control. Technometrics, 36(2), 182-195. doi:10.1080/00401706.1994.10485765 [+]
Arteaga, F., & Ferrer, A. (2010). How to simulate normal data sets with the desired correlation structure. Chemometrics and Intelligent Laboratory Systems, 101(1), 38-42. doi:10.1016/j.chemolab.2009.12.003

Doganaksoy, N., Faltin, F. W., & Tucker, W. T. (1991). Identification of out of control quality characteristics in a multivariate manufacturing environment. Communications in Statistics - Theory and Methods, 20(9), 2775-2790. doi:10.1080/03610929108830667

Fuchs, C., & Benjamini, Y. (1994). Multivariate Profile Charts for Statistical Process Control. Technometrics, 36(2), 182-195. doi:10.1080/00401706.1994.10485765

Hawkins, D. M. (1991). Multivariate Quality Control Based on Regression-Adiusted Variables. Technometrics, 33(1), 61-75. doi:10.1080/00401706.1991.10484770

Editorial Board. (2007). Computational Statistics & Data Analysis, 51(8), iii-v. doi:10.1016/s0167-9473(07)00125-9

Hayter, A. J., & Tsui, K.-L. (1994). Identification and Quantification in Multivariate Quality Control Problems. Journal of Quality Technology, 26(3), 197-208. doi:10.1080/00224065.1994.11979526

HOCHBERG, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800-802. doi:10.1093/biomet/75.4.800

HOMMEL, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika, 75(2), 383-386. doi:10.1093/biomet/75.2.383

Kourti, T., & MacGregor, J. F. (1996). Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, 28(4), 409-428. doi:10.1080/00224065.1996.11979699

Li, J., Jin, J., & Shi, J. (2008). Causation-BasedT2Decomposition for Multivariate Process Monitoring and Diagnosis. Journal of Quality Technology, 40(1), 46-58. doi:10.1080/00224065.2008.11917712

Mason, R. L., Tracy, N. D., & Young, J. C. (1995). Decomposition ofT2 for Multivariate Control Chart Interpretation. Journal of Quality Technology, 27(2), 99-108. doi:10.1080/00224065.1995.11979573

Mason, R. L., Tracy, N. D., & Young, J. C. (1997). A Practical Approach for Interpreting Multivariate T2 Control Chart Signals. Journal of Quality Technology, 29(4), 396-406. doi:10.1080/00224065.1997.11979791

Murphy, B. J. (1987). Selecting Out of Control Variables With the T 2 Multivariate Quality Control Procedure. The Statistician, 36(5), 571. doi:10.2307/2348668

Rencher, A. C. (1993). The Contribution of Individual Variables to Hotelling’s T 2 , Wilks’ Λ, and R 2. Biometrics, 49(2), 479. doi:10.2307/2532560

Roy, J. (1958). Step-Down Procedure in Multivariate Analysis. The Annals of Mathematical Statistics, 29(4), 1177-1187. doi:10.1214/aoms/1177706449

Runger, G. C., Alt, F. B., & Montgomery, D. C. (1996). Contributors to a multivariate statistical process control chart signal. Communications in Statistics - Theory and Methods, 25(10), 2203-2213. doi:10.1080/03610929608831832

Sankoh, A. J., Huque, M. F., & Dubey, S. D. (1997). Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Statistics in Medicine, 16(22), 2529-2542. doi:10.1002/(sici)1097-0258(19971130)16:22<2529::aid-sim692>3.0.co;2-j

Tukey, J. W., Ciminera, J. L., & Heyse, J. F. (1985). Testing the Statistical Certainty of a Response to Increasing Doses of a Drug. Biometrics, 41(1), 295. doi:10.2307/2530666

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem