- -

Principal component analysis applied to study of carbon steel electrochemical corrosion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Principal component analysis applied to study of carbon steel electrochemical corrosion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gandía Romero, José Manuel es_ES
dc.contributor.author Monzón Bello, Pablo es_ES
dc.contributor.author Bataller Prats, Román es_ES
dc.contributor.author Campos Sánchez, Inmaculada es_ES
dc.contributor.author Lloris Cormano, José Manuel es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.date.accessioned 2015-05-26T14:28:10Z
dc.date.available 2015-05-26T14:28:10Z
dc.date.issued 2015-05
dc.identifier.issn 1478-422X
dc.identifier.uri http://hdl.handle.net/10251/50802
dc.description.abstract Voltammetric techniques (open circuit potential, linear polarisation resistance and cyclic voltammetry) have been applied to study the corrosion of carbon steel in water. The study has been performed in aqueous solutions for pH ranging between 7 and 12 in the presence of chlorides, sulphates, carbonates, nitrites and nitrates. Principal component analysis (PCA) was performed with the cyclic voltammetric data. Values of corrosion potential and corrosion current obtained with traditional methods are compared to the conclusions arisen by the PCA. These results show the ability of PCA for the evaluation and diagnosis of corrosion processes and not only that, it leads to the possibility of using steel working electrodes as ion sensors. es_ES
dc.description.sponsorship The financial support from the Spanish Government (project MAT2009-14564-C04) Generalitat Valenciana (Valencian Regional Government; project PROMET EO/2009/016) and to 'Programa de Apoyo a la Investigacion y Desarrollo' de la Universidad Politecnica de Valencia (PAID-05-12) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Maney Publishing es_ES
dc.relation.ispartof Corrosion Engineering, Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Steel es_ES
dc.subject Corrosion es_ES
dc.subject Multivariate analysis es_ES
dc.subject Principal component analysis es_ES
dc.subject Sensors es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Principal component analysis applied to study of carbon steel electrochemical corrosion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1179/1743278214Y.0000000231
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-12/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gandía Romero, JM.; Monzón Bello, P.; Bataller Prats, R.; Campos Sánchez, I.; Lloris Cormano, JM.; Soto Camino, J. (2015). Principal component analysis applied to study of carbon steel electrochemical corrosion. Corrosion Engineering, Science and Technology. 50(4):320-329. https://doi.org/10.1179/1743278214Y.0000000231 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1179/1743278214Y.0000000231 es_ES
dc.description.upvformatpinicio 320 es_ES
dc.description.upvformatpfin 329 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 277417
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Tan YJ, Fwu Y, Bhardwaj K, Bailey S and Gubner R: ‘Review of critical issues in CO2corrosion testing and monitoring techniques’, Corrosion 2010, San Antonio, TX, USA, March 2010, NACE, 10155. es_ES
dc.description.references Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328. doi:10.1016/0950-0618(95)00044-5 es_ES
dc.description.references Andrade, C., Garcés, P., & Martínez, I. (2008). Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide. Corrosion Science, 50(10), 2959-2964. doi:10.1016/j.corsci.2008.07.013 es_ES
dc.description.references Nasser, A., Clément, A., Laurens, S., & Castel, A. (2010). Influence of steel–concrete interface condition on galvanic corrosion currents in carbonated concrete. Corrosion Science, 52(9), 2878-2890. doi:10.1016/j.corsci.2010.04.037 es_ES
dc.description.references Collazo, A., Nóvoa, X. R., & Pérez, C. (1999). Corrosion behaviour of cermet coatings in artificial seawater. Electrochimica Acta, 44(24), 4289-4296. doi:10.1016/s0013-4686(99)00144-9 es_ES
dc.description.references Elsener, B. (2005). Corrosion rate of steel in concrete—Measurements beyond the Tafel law. Corrosion Science, 47(12), 3019-3033. doi:10.1016/j.corsci.2005.06.021 es_ES
dc.description.references Chang, Z.-T., Cherry, B., & Marosszeky, M. (2008). Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete. Corrosion Science, 50(2), 357-364. doi:10.1016/j.corsci.2007.08.009 es_ES
dc.description.references ‘Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron- nickel- or cobalt-based alloys’, ASTM G61-86, West Conshohocken, PA, USA, 2009. es_ES
dc.description.references Al-Dulaijan, S. U., Maslehuddin, M., Shameem, M., Ibrahim, M., & Al-Mehthel, M. (2012). Corrosion protection provided by chemical inhibitors to damaged FBEC bars. Construction and Building Materials, 29, 487-495. doi:10.1016/j.conbuildmat.2011.10.009 es_ES
dc.description.references Meira, G. R., Padaratz, I. J., Alonso, C., & Andrade, C. (2003). Efecto de la distancia al mar en la agresividad por cloruros en estructuras de hormigón en la costa brasileña. Materiales de Construcción, 53(271-272), 179-188. doi:10.3989/mc.2003.v53.i271-272.302 es_ES
dc.description.references Mardia K and Kent J: ‘Multivariate analysis’; 1989, London, Academic Press. es_ES
dc.description.references Pomerantsev, A. L., & Rodionova, O. Y. (2010). Chemometric view on «comprehensive chemometrics». Chemometrics and Intelligent Laboratory Systems, 103(1), 19-24. doi:10.1016/j.chemolab.2010.05.001 es_ES
dc.description.references Hajeeh, M. (2003). Estimating corrosion: a statistical approach. Materials & Design, 24(7), 509-518. doi:10.1016/s0261-3069(03)00110-9 es_ES
dc.description.references Abdel-Qader, I., Pashaie-Rad, S., Abudayyeh, O., & Yehia, S. (2006). PCA-Based algorithm for unsupervised bridge crack detection. Advances in Engineering Software, 37(12), 771-778. doi:10.1016/j.advengsoft.2006.06.002 es_ES
dc.description.references Luciano, G., Traverso, P., & Letardi, P. (2010). Applications of chemometric tools in corrosion studies. Corrosion Science, 52(9), 2750-2757. doi:10.1016/j.corsci.2010.05.016 es_ES
dc.description.references Polikreti, K., Argyropoulos, V., Charalambous, D., Vossou, A., Perdikatsis, V., & Apostolaki, C. (2009). Tracing correlations of corrosion products and microclimate data on outdoor bronze monuments by Principal Component Analysis. Corrosion Science, 51(10), 2416-2422. doi:10.1016/j.corsci.2009.06.039 es_ES
dc.description.references Baddini, A. L. de Q., Cardoso, S. P., Hollauer, E., & Gomes, J. A. da C. P. (2007). Statistical analysis of a corrosion inhibitor family on three steel surfaces (duplex, super-13 and carbon) in hydrochloric acid solutions. Electrochimica Acta, 53(2), 434-446. doi:10.1016/j.electacta.2007.06.050 es_ES
dc.description.references Calabrese, L., Campanella, G., & Proverbio, E. (2012). Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete. Construction and Building Materials, 34, 362-371. doi:10.1016/j.conbuildmat.2012.02.046 es_ES
dc.description.references Lu, Y., Li, J., Ye, L., & Wang, D. (2013). Guided waves for damage detection in rebar-reinforced concrete beams. Construction and Building Materials, 47, 370-378. doi:10.1016/j.conbuildmat.2013.05.016 es_ES
dc.description.references Calabrese, L., Campanella, G., & Proverbio, E. (2013). Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam. Corrosion Science, 73, 161-171. doi:10.1016/j.corsci.2013.03.032 es_ES
dc.description.references Jackson, J. E. (1991). A Use’s Guide to Principal Components. Wiley Series in Probability and Statistics. doi:10.1002/0471725331 es_ES
dc.description.references Martens H and Naes T: ‘Multivariate calibration’; 1989, London, Wiley. es_ES
dc.description.references Stern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56. doi:10.1149/1.2428496 es_ES
dc.description.references Buchanan, R. A., & Stansbury, E. E. (2012). Electrochemical Corrosion. Handbook of Environmental Degradation of Materials, 87-125. doi:10.1016/b978-1-4377-3455-3.00004-3 es_ES
dc.description.references Chatfield, C., & Collins, A. J. (1980). Introduction to Multivariate Analysis. doi:10.1007/978-1-4899-3184-9 es_ES
dc.description.references Hardle W and Simar L: ‘Applied multivariate statistical analysis’; 2007, Berlin, Springer. es_ES
dc.description.references Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76(1-3), 449-454. doi:10.1016/s0925-4005(01)00583-4 es_ES
dc.description.references Macdonald, D. D. (1978). An Impedance Interpretation of Small Amplitude Cyclic Voltammetry. Journal of The Electrochemical Society, 125(9), 1443. doi:10.1149/1.2131693 es_ES
dc.description.references Marchand, J., Samson, E., Maltais, Y., & Beaudoin, J. J. (2002). Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete. Cement and Concrete Composites, 24(3-4), 317-329. doi:10.1016/s0958-9465(01)00083-x es_ES
dc.description.references Martell AE and Smith RM: ‘Critical stability constants’; 1977, New York, Plenum Press. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem