- -

Principal component analysis applied to study of carbon steel electrochemical corrosion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Principal component analysis applied to study of carbon steel electrochemical corrosion

Mostrar el registro completo del ítem

Gandía Romero, JM.; Monzón Bello, P.; Bataller Prats, R.; Campos Sánchez, I.; Lloris Cormano, JM.; Soto Camino, J. (2015). Principal component analysis applied to study of carbon steel electrochemical corrosion. Corrosion Engineering, Science and Technology. 50(4):320-329. https://doi.org/10.1179/1743278214Y.0000000231

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/50802

Ficheros en el ítem

Metadatos del ítem

Título: Principal component analysis applied to study of carbon steel electrochemical corrosion
Autor: Gandía Romero, José Manuel Monzón Bello, Pablo Bataller Prats, Román Campos Sánchez, Inmaculada Lloris Cormano, José Manuel Soto Camino, Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Voltammetric techniques (open circuit potential, linear polarisation resistance and cyclic voltammetry) have been applied to study the corrosion of carbon steel in water. The study has been performed in aqueous solutions ...[+]
Palabras clave: Steel , Corrosion , Multivariate analysis , Principal component analysis , Sensors
Derechos de uso: Cerrado
Fuente:
Corrosion Engineering, Science and Technology. (issn: 1478-422X )
DOI: 10.1179/1743278214Y.0000000231
Editorial:
Maney Publishing
Versión del editor: http://dx.doi.org/10.1179/1743278214Y.0000000231
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
info:eu-repo/grantAgreement/UPV//PAID-05-12/
Agradecimientos:
The financial support from the Spanish Government (project MAT2009-14564-C04) Generalitat Valenciana (Valencian Regional Government; project PROMET EO/2009/016) and to 'Programa de Apoyo a la Investigacion y Desarrollo' ...[+]
Tipo: Artículo

References

Tan YJ, Fwu Y, Bhardwaj K, Bailey S and Gubner R: ‘Review of critical issues in CO2corrosion testing and monitoring techniques’, Corrosion 2010, San Antonio, TX, USA, March 2010, NACE, 10155.

Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328. doi:10.1016/0950-0618(95)00044-5

Andrade, C., Garcés, P., & Martínez, I. (2008). Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide. Corrosion Science, 50(10), 2959-2964. doi:10.1016/j.corsci.2008.07.013 [+]
Tan YJ, Fwu Y, Bhardwaj K, Bailey S and Gubner R: ‘Review of critical issues in CO2corrosion testing and monitoring techniques’, Corrosion 2010, San Antonio, TX, USA, March 2010, NACE, 10155.

Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328. doi:10.1016/0950-0618(95)00044-5

Andrade, C., Garcés, P., & Martínez, I. (2008). Galvanic currents and corrosion rates of reinforcements measured in cells simulating different pitting areas caused by chloride attack in sodium hydroxide. Corrosion Science, 50(10), 2959-2964. doi:10.1016/j.corsci.2008.07.013

Nasser, A., Clément, A., Laurens, S., & Castel, A. (2010). Influence of steel–concrete interface condition on galvanic corrosion currents in carbonated concrete. Corrosion Science, 52(9), 2878-2890. doi:10.1016/j.corsci.2010.04.037

Collazo, A., Nóvoa, X. R., & Pérez, C. (1999). Corrosion behaviour of cermet coatings in artificial seawater. Electrochimica Acta, 44(24), 4289-4296. doi:10.1016/s0013-4686(99)00144-9

Elsener, B. (2005). Corrosion rate of steel in concrete—Measurements beyond the Tafel law. Corrosion Science, 47(12), 3019-3033. doi:10.1016/j.corsci.2005.06.021

Chang, Z.-T., Cherry, B., & Marosszeky, M. (2008). Polarisation behaviour of steel bar samples in concrete in seawater. Part 1: Experimental measurement of polarisation curves of steel in concrete. Corrosion Science, 50(2), 357-364. doi:10.1016/j.corsci.2007.08.009

‘Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron- nickel- or cobalt-based alloys’, ASTM G61-86, West Conshohocken, PA, USA, 2009.

Al-Dulaijan, S. U., Maslehuddin, M., Shameem, M., Ibrahim, M., & Al-Mehthel, M. (2012). Corrosion protection provided by chemical inhibitors to damaged FBEC bars. Construction and Building Materials, 29, 487-495. doi:10.1016/j.conbuildmat.2011.10.009

Meira, G. R., Padaratz, I. J., Alonso, C., & Andrade, C. (2003). Efecto de la distancia al mar en la agresividad por cloruros en estructuras de hormigón en la costa brasileña. Materiales de Construcción, 53(271-272), 179-188. doi:10.3989/mc.2003.v53.i271-272.302

Mardia K and Kent J: ‘Multivariate analysis’; 1989, London, Academic Press.

Pomerantsev, A. L., & Rodionova, O. Y. (2010). Chemometric view on «comprehensive chemometrics». Chemometrics and Intelligent Laboratory Systems, 103(1), 19-24. doi:10.1016/j.chemolab.2010.05.001

Hajeeh, M. (2003). Estimating corrosion: a statistical approach. Materials & Design, 24(7), 509-518. doi:10.1016/s0261-3069(03)00110-9

Abdel-Qader, I., Pashaie-Rad, S., Abudayyeh, O., & Yehia, S. (2006). PCA-Based algorithm for unsupervised bridge crack detection. Advances in Engineering Software, 37(12), 771-778. doi:10.1016/j.advengsoft.2006.06.002

Luciano, G., Traverso, P., & Letardi, P. (2010). Applications of chemometric tools in corrosion studies. Corrosion Science, 52(9), 2750-2757. doi:10.1016/j.corsci.2010.05.016

Polikreti, K., Argyropoulos, V., Charalambous, D., Vossou, A., Perdikatsis, V., & Apostolaki, C. (2009). Tracing correlations of corrosion products and microclimate data on outdoor bronze monuments by Principal Component Analysis. Corrosion Science, 51(10), 2416-2422. doi:10.1016/j.corsci.2009.06.039

Baddini, A. L. de Q., Cardoso, S. P., Hollauer, E., & Gomes, J. A. da C. P. (2007). Statistical analysis of a corrosion inhibitor family on three steel surfaces (duplex, super-13 and carbon) in hydrochloric acid solutions. Electrochimica Acta, 53(2), 434-446. doi:10.1016/j.electacta.2007.06.050

Calabrese, L., Campanella, G., & Proverbio, E. (2012). Noise removal by cluster analysis after long time AE corrosion monitoring of steel reinforcement in concrete. Construction and Building Materials, 34, 362-371. doi:10.1016/j.conbuildmat.2012.02.046

Lu, Y., Li, J., Ye, L., & Wang, D. (2013). Guided waves for damage detection in rebar-reinforced concrete beams. Construction and Building Materials, 47, 370-378. doi:10.1016/j.conbuildmat.2013.05.016

Calabrese, L., Campanella, G., & Proverbio, E. (2013). Identification of corrosion mechanisms by univariate and multivariate statistical analysis during long term acoustic emission monitoring on a pre-stressed concrete beam. Corrosion Science, 73, 161-171. doi:10.1016/j.corsci.2013.03.032

Jackson, J. E. (1991). A Use’s Guide to Principal Components. Wiley Series in Probability and Statistics. doi:10.1002/0471725331

Martens H and Naes T: ‘Multivariate calibration’; 1989, London, Wiley.

Stern, M., & Geaby, A. L. (1957). Electrochemical Polarization. Journal of The Electrochemical Society, 104(1), 56. doi:10.1149/1.2428496

Buchanan, R. A., & Stansbury, E. E. (2012). Electrochemical Corrosion. Handbook of Environmental Degradation of Materials, 87-125. doi:10.1016/b978-1-4377-3455-3.00004-3

Chatfield, C., & Collins, A. J. (1980). Introduction to Multivariate Analysis. doi:10.1007/978-1-4899-3184-9

Hardle W and Simar L: ‘Applied multivariate statistical analysis’; 2007, Berlin, Springer.

Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76(1-3), 449-454. doi:10.1016/s0925-4005(01)00583-4

Macdonald, D. D. (1978). An Impedance Interpretation of Small Amplitude Cyclic Voltammetry. Journal of The Electrochemical Society, 125(9), 1443. doi:10.1149/1.2131693

Marchand, J., Samson, E., Maltais, Y., & Beaudoin, J. J. (2002). Theoretical analysis of the effect of weak sodium sulfate solutions on the durability of concrete. Cement and Concrete Composites, 24(3-4), 317-329. doi:10.1016/s0958-9465(01)00083-x

Martell AE and Smith RM: ‘Critical stability constants’; 1977, New York, Plenum Press.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem