- -

Enhanced of sound by soft reflections in exponentially chirped crystals

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Enhanced of sound by soft reflections in exponentially chirped crystals

Show full item record

Cebrecos Ruiz, A.; Picó Vila, R.; Sánchez Morcillo, VJ.; Staliünas, K.; Romero García, V.; García-Raffi, LM. (2014). Enhanced of sound by soft reflections in exponentially chirped crystals. AIP Advances. 4(12):124402-124412. https://doi.org/10.1063/1.4902508

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51000

Files in this item

Item Metadata

Title: Enhanced of sound by soft reflections in exponentially chirped crystals
Author: Cebrecos Ruiz, Alejandro Picó Vila, Rubén Sánchez Morcillo, Víctor José Staliünas, Kestutis Romero García, Vicente García-Raffi, L. M.
UPV Unit: Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Issued date:
Abstract:
The enhancement of sound inside a two dimensional exponentially chirped crystal during the soft reflections of waves is experimentally and theoretically explored in this work. The control of this enhancement is achieved ...[+]
Subjects: Acoustic waves , Band , Enhancement , Locally periodic , Periodic structures , Soft reflection , Sound enhancements , Wave propagation , Sonic crystals , Phononic crystals , Chirped crystals
Copyrigths: Reconocimiento (by)
Source:
AIP Advances. (issn: 2158-3226 )
DOI: 10.1063/1.4902508
Publisher:
American Institute of Physics (AIP): Open Access Journals
Publisher version: http://dx.doi.org/10.1063/1.4902508
Project ID:
info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/
info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/OPERADORES MULTILINEALES, ESPACIOS DE FUNCIONES INTEGRABLES Y APLICACIONES/
Thanks:
The work was supported by Spanish Ministry of Economy and European Union FEDER through project FIS2011-29731-C02-02. LMGR Acknowledges Supported by MINECO and FEDER, under Grant MTM2012-36740-c02-02. ACR is grateful for ...[+]
Type: Artículo

References

Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002

Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022

Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 [+]
Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002

Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022

Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0

Zhang, X., & Liu, Z. (2004). Negative refraction of acoustic waves in two-dimensional phononic crystals. Applied Physics Letters, 85(2), 341-343. doi:10.1063/1.1772854

Lu, M.-H., Zhang, C., Feng, L., Zhao, J., Chen, Y.-F., Mao, Y.-W., … Ming, N.-B. (2007). Negative birefraction of acoustic waves in a sonic crystal. Nature Materials, 6(10), 744-748. doi:10.1038/nmat1987

Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V., & Staliunas, K. (2007). Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Physical Review B, 75(1). doi:10.1103/physrevb.75.014304

Espinosa, V., Sánchez-Morcillo, V. J., Staliunas, K., Pérez-Arjona, I., & Redondo, J. (2007). Subdiffractive propagation of ultrasound in sonic crystals. Physical Review B, 76(14). doi:10.1103/physrevb.76.140302

Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301

Picó, R., Sánchez-Morcillo, V. J., Pérez-Arjona, I., & Staliunas, K. (2012). Spatial filtering of sound beams by sonic crystals. Applied Acoustics, 73(4), 302-306. doi:10.1016/j.apacoust.2011.09.011

Khelif, A., Deymier, P. A., Djafari-Rouhani, B., Vasseur, J. O., & Dobrzynski, L. (2003). Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency. Journal of Applied Physics, 94(3), 1308-1311. doi:10.1063/1.1557776

Cervera, F., Sanchis, L., Sánchez-Pérez, J. V., Martínez-Sala, R., Rubio, C., Meseguer, F., … Sánchez-Dehesa, J. (2001). Refractive Acoustic Devices for Airborne Sound. Physical Review Letters, 88(2). doi:10.1103/physrevlett.88.023902

Cebrecos, A., Romero-García, V., Picó, R., Pérez-Arjona, I., Espinosa, V., Sánchez-Morcillo, V. J., & Staliunas, K. (2012). Formation of collimated sound beams by three-dimensional sonic crystals. Journal of Applied Physics, 111(10), 104910. doi:10.1063/1.4719082

Li, X.-F., Ni, X., Feng, L., Lu, M.-H., He, C., & Chen, Y.-F. (2011). Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode. Physical Review Letters, 106(8). doi:10.1103/physrevlett.106.084301

Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739

Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988

Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E., & van Tiggelen, B. A. (2008). Localization of ultrasound in a three-dimensional elastic network. Nature Physics, 4(12), 945-948. doi:10.1038/nphys1101

Sainidou, R., Stefanou, N., & Modinos, A. (2005). Widening of Phononic Transmission Gaps via Anderson Localization. Physical Review Letters, 94(20). doi:10.1103/physrevlett.94.205503

Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J., & Staliunas, K. (2013). Enhancement of sound in chirped sonic crystals. Applied Physics Letters, 102(9), 091906. doi:10.1063/1.4793575

Cassan, E., Do, K.-V., Caer, C., Marris-Morini, D., & Vivien, L. (2011). Short-Wavelength Light Propagation in Graded Photonic Crystals. Journal of Lightwave Technology, 29(13), 1937-1943. doi:10.1109/jlt.2011.2151175

Cheng, Y. C., Kicas, S., Trull, J., Peckus, M., Cojocaru, C., Vilaseca, R., … Staliunas, K. (2014). Flat Focusing Mirror. Scientific Reports, 4(1). doi:10.1038/srep06326

Kushwaha, M. S., Djafari-Rouhani, B., Dobrzynski, L., & Vasseur, J. O. (1998). Sonic stop-bands for cubic arrays of rigid inclusions in air. The European Physical Journal B, 3(2), 155-161. doi:10.1007/s100510050296

Psarobas, I. E., & Sigalas, M. M. (2002). Elastic band gaps in a fcc lattice of mercury spheres in aluminum. Physical Review B, 66(5). doi:10.1103/physrevb.66.052302

Wu, L.-Y., & Chen, L.-W. (2011). An acoustic bending waveguide designed by graded sonic crystals. Journal of Applied Physics, 110(11), 114507. doi:10.1063/1.3664856

Shen, Y., Fu, J., & Yu, G. (2011). Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs. Physics Letters A, 375(43), 3801-3803. doi:10.1016/j.physleta.2011.08.023

Stockman, M. I. (2004). Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides. Physical Review Letters, 93(13). doi:10.1103/physrevlett.93.137404

Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V., & Shalaev, V. M. (2010). Experimental observation of the trapped rainbow. Applied Physics Letters, 96(21), 211121. doi:10.1063/1.3442501

Centeno, E., Cassagne, D., & Albert, J.-P. (2006). Mirage and superbending effect in two-dimensional graded photonic crystals. Physical Review B, 73(23). doi:10.1103/physrevb.73.235119

Redondo, J., Picó, R., Sánchez-Morcillo, V. J., & Woszczyk, W. (2013). Sound diffusers based on sonic crystals. The Journal of the Acoustical Society of America, 134(6), 4412-4417. doi:10.1121/1.4828826

Cicek, A., Adem Kaya, O., Yilmaz, M., & Ulug, B. (2012). Slow sound propagation in a sonic crystal linear waveguide. Journal of Applied Physics, 111(1), 013522. doi:10.1063/1.3676581

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record