- -

Enhanced of sound by soft reflections in exponentially chirped crystals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhanced of sound by soft reflections in exponentially chirped crystals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cebrecos Ruiz, Alejandro es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Sánchez Morcillo, Víctor José es_ES
dc.contributor.author Staliünas, Kestutis es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author García-Raffi, L. M. es_ES
dc.date.accessioned 2015-05-29T17:56:32Z
dc.date.available 2015-05-29T17:56:32Z
dc.date.issued 2014-12
dc.identifier.issn 2158-3226
dc.identifier.uri http://hdl.handle.net/10251/51000
dc.description.abstract The enhancement of sound inside a two dimensional exponentially chirped crystal during the soft reflections of waves is experimentally and theoretically explored in this work. The control of this enhancement is achieved by a gradual variation of the dispersion in the system by means of a chirp of the lattice constant. The sound enhancement is produced at some planes of the crystal in which the wave is softly reflected due to a progressive slowing down of the sound wave. We find that the character of the sound enhancement depends on the function of the variation of dispersion, i.e., on the function of the chirp. A simple coupled mode theory is proposed to find the analytical solutions of the sound wave enhancement in the exponentially chirped crystal. Harmonic and time domain numerical simulations are performed to interpret the concept of the soft reflections, and to check the analytically calculated field distributions both in good agreement with experiments. Specially we obtain stronger sound enhancement than in linearly chirped crystals. This sound enhancement could motivate applications in energy harvesting, e.g., to increase the efficiency of detectors and absorbers. (C) 2014 Author(s). es_ES
dc.description.sponsorship The work was supported by Spanish Ministry of Economy and European Union FEDER through project FIS2011-29731-C02-02. LMGR Acknowledges Supported by MINECO and FEDER, under Grant MTM2012-36740-c02-02. ACR is grateful for the support of Programa de Ayudas e Iniciativas de Investigacion (PAID) of the UPV. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP): Open Access Journals es_ES
dc.relation.ispartof AIP Advances es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Acoustic waves es_ES
dc.subject Band es_ES
dc.subject Enhancement es_ES
dc.subject Locally periodic es_ES
dc.subject Periodic structures es_ES
dc.subject Soft reflection es_ES
dc.subject Sound enhancements es_ES
dc.subject Wave propagation es_ES
dc.subject Sonic crystals es_ES
dc.subject Phononic crystals es_ES
dc.subject Chirped crystals es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Enhanced of sound by soft reflections in exponentially chirped crystals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4902508
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-36740-C02-02/ES/OPERADORES MULTILINEALES, ESPACIOS DE FUNCIONES INTEGRABLES Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Cebrecos Ruiz, A.; Picó Vila, R.; Sánchez Morcillo, VJ.; Staliünas, K.; Romero García, V.; García-Raffi, LM. (2014). Enhanced of sound by soft reflections in exponentially chirped crystals. AIP Advances. 4(12):124402-124412. https://doi.org/10.1063/1.4902508 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4902508 es_ES
dc.description.upvformatpinicio 124402 es_ES
dc.description.upvformatpfin 124412 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 276878
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzyński, L., & Deymier, P. A. (2010). Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 65(8), 229-291. doi:10.1016/j.surfrep.2010.08.002 es_ES
dc.description.references Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 es_ES
dc.description.references Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 es_ES
dc.description.references Zhang, X., & Liu, Z. (2004). Negative refraction of acoustic waves in two-dimensional phononic crystals. Applied Physics Letters, 85(2), 341-343. doi:10.1063/1.1772854 es_ES
dc.description.references Lu, M.-H., Zhang, C., Feng, L., Zhao, J., Chen, Y.-F., Mao, Y.-W., … Ming, N.-B. (2007). Negative birefraction of acoustic waves in a sonic crystal. Nature Materials, 6(10), 744-748. doi:10.1038/nmat1987 es_ES
dc.description.references Pérez-Arjona, I., Sánchez-Morcillo, V. J., Redondo, J., Espinosa, V., & Staliunas, K. (2007). Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Physical Review B, 75(1). doi:10.1103/physrevb.75.014304 es_ES
dc.description.references Espinosa, V., Sánchez-Morcillo, V. J., Staliunas, K., Pérez-Arjona, I., & Redondo, J. (2007). Subdiffractive propagation of ultrasound in sonic crystals. Physical Review B, 76(14). doi:10.1103/physrevb.76.140302 es_ES
dc.description.references Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301 es_ES
dc.description.references Picó, R., Sánchez-Morcillo, V. J., Pérez-Arjona, I., & Staliunas, K. (2012). Spatial filtering of sound beams by sonic crystals. Applied Acoustics, 73(4), 302-306. doi:10.1016/j.apacoust.2011.09.011 es_ES
dc.description.references Khelif, A., Deymier, P. A., Djafari-Rouhani, B., Vasseur, J. O., & Dobrzynski, L. (2003). Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency. Journal of Applied Physics, 94(3), 1308-1311. doi:10.1063/1.1557776 es_ES
dc.description.references Cervera, F., Sanchis, L., Sánchez-Pérez, J. V., Martínez-Sala, R., Rubio, C., Meseguer, F., … Sánchez-Dehesa, J. (2001). Refractive Acoustic Devices for Airborne Sound. Physical Review Letters, 88(2). doi:10.1103/physrevlett.88.023902 es_ES
dc.description.references Cebrecos, A., Romero-García, V., Picó, R., Pérez-Arjona, I., Espinosa, V., Sánchez-Morcillo, V. J., & Staliunas, K. (2012). Formation of collimated sound beams by three-dimensional sonic crystals. Journal of Applied Physics, 111(10), 104910. doi:10.1063/1.4719082 es_ES
dc.description.references Li, X.-F., Ni, X., Feng, L., Lu, M.-H., He, C., & Chen, Y.-F. (2011). Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode. Physical Review Letters, 106(8). doi:10.1103/physrevlett.106.084301 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988 es_ES
dc.description.references Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E., & van Tiggelen, B. A. (2008). Localization of ultrasound in a three-dimensional elastic network. Nature Physics, 4(12), 945-948. doi:10.1038/nphys1101 es_ES
dc.description.references Sainidou, R., Stefanou, N., & Modinos, A. (2005). Widening of Phononic Transmission Gaps via Anderson Localization. Physical Review Letters, 94(20). doi:10.1103/physrevlett.94.205503 es_ES
dc.description.references Romero-García, V., Picó, R., Cebrecos, A., Sánchez-Morcillo, V. J., & Staliunas, K. (2013). Enhancement of sound in chirped sonic crystals. Applied Physics Letters, 102(9), 091906. doi:10.1063/1.4793575 es_ES
dc.description.references Cassan, E., Do, K.-V., Caer, C., Marris-Morini, D., & Vivien, L. (2011). Short-Wavelength Light Propagation in Graded Photonic Crystals. Journal of Lightwave Technology, 29(13), 1937-1943. doi:10.1109/jlt.2011.2151175 es_ES
dc.description.references Cheng, Y. C., Kicas, S., Trull, J., Peckus, M., Cojocaru, C., Vilaseca, R., … Staliunas, K. (2014). Flat Focusing Mirror. Scientific Reports, 4(1). doi:10.1038/srep06326 es_ES
dc.description.references Kushwaha, M. S., Djafari-Rouhani, B., Dobrzynski, L., & Vasseur, J. O. (1998). Sonic stop-bands for cubic arrays of rigid inclusions in air. The European Physical Journal B, 3(2), 155-161. doi:10.1007/s100510050296 es_ES
dc.description.references Psarobas, I. E., & Sigalas, M. M. (2002). Elastic band gaps in a fcc lattice of mercury spheres in aluminum. Physical Review B, 66(5). doi:10.1103/physrevb.66.052302 es_ES
dc.description.references Wu, L.-Y., & Chen, L.-W. (2011). An acoustic bending waveguide designed by graded sonic crystals. Journal of Applied Physics, 110(11), 114507. doi:10.1063/1.3664856 es_ES
dc.description.references Shen, Y., Fu, J., & Yu, G. (2011). Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs. Physics Letters A, 375(43), 3801-3803. doi:10.1016/j.physleta.2011.08.023 es_ES
dc.description.references Stockman, M. I. (2004). Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides. Physical Review Letters, 93(13). doi:10.1103/physrevlett.93.137404 es_ES
dc.description.references Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V., & Shalaev, V. M. (2010). Experimental observation of the trapped rainbow. Applied Physics Letters, 96(21), 211121. doi:10.1063/1.3442501 es_ES
dc.description.references Centeno, E., Cassagne, D., & Albert, J.-P. (2006). Mirage and superbending effect in two-dimensional graded photonic crystals. Physical Review B, 73(23). doi:10.1103/physrevb.73.235119 es_ES
dc.description.references Redondo, J., Picó, R., Sánchez-Morcillo, V. J., & Woszczyk, W. (2013). Sound diffusers based on sonic crystals. The Journal of the Acoustical Society of America, 134(6), 4412-4417. doi:10.1121/1.4828826 es_ES
dc.description.references Cicek, A., Adem Kaya, O., Yilmaz, M., & Ulug, B. (2012). Slow sound propagation in a sonic crystal linear waveguide. Journal of Applied Physics, 111(1), 013522. doi:10.1063/1.3676581 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem