- -

Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems

Mostrar el registro completo del ítem

Mejía, A.; Cassiraga, EF.; Sahuquillo Herráiz, A. (2012). Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems. Mathematical Geosciences. 44(2):227-238. https://doi.org/10.1007/s11004-012-9388-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51156

Ficheros en el ítem

Metadatos del ítem

Título: Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems
Autor: Mejía, Amanda Cassiraga, Eduardo Fabián Sahuquillo Herráiz, Andrés
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
Nitrate concentrations in multi-aquifer systems are heavily affected by the presence of wellbores (active or abandoned) that are screened in several aquifers. The spatial variability of hydraulic conductivity in the confining ...[+]
Palabras clave: Abandoned wells , Aquifer , Fast pathways , Groundwater , Nitrate , Wellbores , Aquitards , Cell block , Concentration maps , Confining layers , Effective porosity , Fate and transport , Flow and transport , Hydrodynamic conditions , Low conductivity , Nitrate concentration , Numerical models , Preferential pathways , Pumping rate , Solute concentrations , Solute distribution , Spatial variability , Three-dimensional flow , Time varying , Vertical hydraulic conductivities , Well bore , Aquifers , Hydraulic conductivity , Hydrogeology , Indicators (chemical) , Nitrates , Oil field equipment , Water quality , Groundwater resources , Concentration (composition) , Interpolation , Numerical model , Spatial distribution
Derechos de uso: Cerrado
Fuente:
Mathematical Geosciences. (issn: 1874-8961 )
DOI: 10.1007/s11004-012-9388-3
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s11004-012-9388-3
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CGL2008-06394-C02-01/ES/MODELADO DE LAS RELACIONES RIO-ACUIFERO. APLICACION AL SISTEMA DE LA MANCHA ORIENTAL/
Agradecimientos:
The studies in which this paper is based on have been partially funded by the Spanish MICIN (Ministerio de Ciencia e Innovacion) CGL2008-06394 C02-01 project.
Tipo: Artículo

References

Arumí JL, Núñez J, Salgado L, Claret M (2006) Evaluación del riesgo de contaminación con nitrato de pozos de suministro de agua potable rural en Chile (zona de parral). Rev Panam Salud Pública 20:385–392. doi: 10.1590/S1020-49892006001100004

Bonton A, Rouleau A, Bouchard C, Rodriguez M (2011) Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agric Syst 104:429–439. doi: 10.1016/j.agsy.2011.02.001

Butler J, Whittemore D, Zhan X, Healey J (2004) Analysis of two pumping tests at the O’Rourke bridge site on the Arkansas River in Pawnee County, Kansas. Resources. KGS Open File Report 2004–32, Kansas Department of Agriculture, Division of Water. http://www.kgs.ku.edu/Hydro/Publications/2004/OFR04_32/larned_pumping.pdf [+]
Arumí JL, Núñez J, Salgado L, Claret M (2006) Evaluación del riesgo de contaminación con nitrato de pozos de suministro de agua potable rural en Chile (zona de parral). Rev Panam Salud Pública 20:385–392. doi: 10.1590/S1020-49892006001100004

Bonton A, Rouleau A, Bouchard C, Rodriguez M (2011) Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agric Syst 104:429–439. doi: 10.1016/j.agsy.2011.02.001

Butler J, Whittemore D, Zhan X, Healey J (2004) Analysis of two pumping tests at the O’Rourke bridge site on the Arkansas River in Pawnee County, Kansas. Resources. KGS Open File Report 2004–32, Kansas Department of Agriculture, Division of Water. http://www.kgs.ku.edu/Hydro/Publications/2004/OFR04_32/larned_pumping.pdf

Carbó LI, Flores MC, Herrero MA (2009) Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires Argentina. Environ Geol 57:1489–1500. doi: 10.1007/s00254-008-1426-6

Cionchi J, Redin I (2004) La contaminación del agua subterránea producida por las deficiencias constructivas en las perforaciones. Obras sanitarias MGP. Gerencia de Planificación y Administración de Recursos Hídricos—Obras Sanitarias Mar del Plata SE. Proyecto REDESAR. http://www.osmgp.gov.ar/web001/documentos/pdf/la_contaminacion_del_agua.pdf

Elci A, Molz FJ, Waldrop WR (2001) Implications of observed and simulated ambient flow in monitoring wells. Ground Water 39(6):853–862. doi: 10.1111/j.1745-6584.2001.tb02473.x

Harbaugh AW, Banta ER, Hill MC, McDonal MG (2000) MODFLOW-2000, the US Geological Survey modular ground water model. User guide to modularization concepts and the ground water flow process. US Geological Survey Open-File Report 00-92

Konikow LF, Hornberger GZ (2006) Modelling effects of multimode wells on solute transport. Ground Water 44(5):648–660. doi: 10.1111/j.1745-6584.2006.00231.x

Kozuskanich J, Novakowski KS, Anderson BC (2011) Fecal indicator bacteria variability in samples pumped from monitoring wells. Ground Water 49(1):43–52. doi: 10.1111/j.1745-6584.2010.00713.x

Lacombe S, Sudicky EA, Frape SK, Unger AJ (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882. doi: 10.1029/95WR00661

Landon MK, Jurgens BC, Katz BG, EbertS SM, Burow KR, Crandall CA (2010) Depth dependent sampling to identify short-circuit pathways to public supply wells in multiple aquifer settings in the United States. Hydrogeol J 18(3):577–593. doi: 10.1007/s10040-009-0531-2

Ma R, Zheng C, Tonkin M, Zachara M (2011) Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions. J Contam Hydrol 123:11–19. doi: 10.1016/j.jconhyd.2010.12.001

Mayo L (2010) Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and water quality from long-screened wells: What is sampled an what is not? Hydrogeol J 18:823–837. doi: 10.1007/s10040-009-0568-2

Moratalla A, Gómez J, Heras J, Sanz D, Castaño S (2009) Nitrate in the water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water Resour Manag 23:1621–1640. doi: 10.1007/s11269-008-9344-7

Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276

Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—A review. J Environ Qual 22:392–402

Wolfe AH, Patz JA (2002) Reactive nitrogen and human health: acute and long term implications. J Hum-Environ Syst 31(2):120–125. doi: 10.1579/0044-7447-31.2.120

Zheng C, Wang P (1999) MT3DMS. Department of Geological Sciences, Army Corps of Engineers

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem