Mostrar el registro sencillo del ítem
dc.contributor.author | Mejía, Amanda | es_ES |
dc.contributor.author | Cassiraga, Eduardo Fabián | es_ES |
dc.contributor.author | Sahuquillo Herráiz, Andrés | es_ES |
dc.date.accessioned | 2015-06-02T18:02:58Z | |
dc.date.available | 2015-06-02T18:02:58Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1874-8961 | |
dc.identifier.uri | http://hdl.handle.net/10251/51156 | |
dc.description.abstract | Nitrate concentrations in multi-aquifer systems are heavily affected by the presence of wellbores (active or abandoned) that are screened in several aquifers. The spatial variability of hydraulic conductivity in the confining layers has also an important impact on the concentrations. A synthetic three-dimensional flow and transport exercise was carried in a multi-aquifer system consisting of two aquifers separated by an aquitard in which 100 vertical wellbores had been drilled. To model the wellbores and the flow and transport connection between aquifers that they may induce, we assign a high vertical hydraulic conductivity and a low effective porosity to the cell blocks including the wells. With these parameters, a solute will travel quickly from one aquifer to the other without being stored in the well itself. The wellbores will act as preferential pathways, and the solute will move quickly between aquifers according to the hydrodynamic conditions. Not considering these preferential pathways could induce erroneous interpretations of the solute distribution in an aquifer. We also noted that when there are vertical wellbores that connect aquifers in a multi-aquifer system, low conductivity in the aquitard enhances the flow of solute through the wellbores. Time-varying pumping rates induce important fluctuations in nitrate concentrations; therefore, any estimate of the water quality of the aquifer will depend on the moment when the data has been recorded. Consequently, concentration maps obtained by interpolation of point samples are seldom a good indicator of the chemical status of groundwater bodies; alternatively, we recommend complementing the usual interpolated maps with numerical models to gain a true understanding of the spatial distribution of the solute concentration. © 2012 International Association for Mathematical Geosciences. | es_ES |
dc.description.sponsorship | The studies in which this paper is based on have been partially funded by the Spanish MICIN (Ministerio de Ciencia e Innovacion) CGL2008-06394 C02-01 project. | en_EN |
dc.language | Español | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Mathematical Geosciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Abandoned wells | es_ES |
dc.subject | Aquifer | es_ES |
dc.subject | Fast pathways | es_ES |
dc.subject | Groundwater | es_ES |
dc.subject | Nitrate | es_ES |
dc.subject | Wellbores | es_ES |
dc.subject | Aquitards | es_ES |
dc.subject | Cell block | es_ES |
dc.subject | Concentration maps | es_ES |
dc.subject | Confining layers | es_ES |
dc.subject | Effective porosity | es_ES |
dc.subject | Fate and transport | es_ES |
dc.subject | Flow and transport | es_ES |
dc.subject | Hydrodynamic conditions | es_ES |
dc.subject | Low conductivity | es_ES |
dc.subject | Nitrate concentration | es_ES |
dc.subject | Numerical models | es_ES |
dc.subject | Preferential pathways | es_ES |
dc.subject | Pumping rate | es_ES |
dc.subject | Solute concentrations | es_ES |
dc.subject | Solute distribution | es_ES |
dc.subject | Spatial variability | es_ES |
dc.subject | Three-dimensional flow | es_ES |
dc.subject | Time varying | es_ES |
dc.subject | Vertical hydraulic conductivities | es_ES |
dc.subject | Well bore | es_ES |
dc.subject | Aquifers | es_ES |
dc.subject | Hydraulic conductivity | es_ES |
dc.subject | Hydrogeology | es_ES |
dc.subject | Indicators (chemical) | es_ES |
dc.subject | Nitrates | es_ES |
dc.subject | Oil field equipment | es_ES |
dc.subject | Water quality | es_ES |
dc.subject | Groundwater resources | es_ES |
dc.subject | Concentration (composition) | es_ES |
dc.subject | Interpolation | es_ES |
dc.subject | Numerical model | es_ES |
dc.subject | Spatial distribution | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11004-012-9388-3 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2008-06394-C02-01/ES/MODELADO DE LAS RELACIONES RIO-ACUIFERO. APLICACION AL SISTEMA DE LA MANCHA ORIENTAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Mejía, A.; Cassiraga, EF.; Sahuquillo Herráiz, A. (2012). Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems. Mathematical Geosciences. 44(2):227-238. https://doi.org/10.1007/s11004-012-9388-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11004-012-9388-3 | es_ES |
dc.description.upvformatpinicio | 227 | es_ES |
dc.description.upvformatpfin | 238 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 221655 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Arumí JL, Núñez J, Salgado L, Claret M (2006) Evaluación del riesgo de contaminación con nitrato de pozos de suministro de agua potable rural en Chile (zona de parral). Rev Panam Salud Pública 20:385–392. doi: 10.1590/S1020-49892006001100004 | es_ES |
dc.description.references | Bonton A, Rouleau A, Bouchard C, Rodriguez M (2011) Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agric Syst 104:429–439. doi: 10.1016/j.agsy.2011.02.001 | es_ES |
dc.description.references | Butler J, Whittemore D, Zhan X, Healey J (2004) Analysis of two pumping tests at the O’Rourke bridge site on the Arkansas River in Pawnee County, Kansas. Resources. KGS Open File Report 2004–32, Kansas Department of Agriculture, Division of Water. http://www.kgs.ku.edu/Hydro/Publications/2004/OFR04_32/larned_pumping.pdf | es_ES |
dc.description.references | Carbó LI, Flores MC, Herrero MA (2009) Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires Argentina. Environ Geol 57:1489–1500. doi: 10.1007/s00254-008-1426-6 | es_ES |
dc.description.references | Cionchi J, Redin I (2004) La contaminación del agua subterránea producida por las deficiencias constructivas en las perforaciones. Obras sanitarias MGP. Gerencia de Planificación y Administración de Recursos Hídricos—Obras Sanitarias Mar del Plata SE. Proyecto REDESAR. http://www.osmgp.gov.ar/web001/documentos/pdf/la_contaminacion_del_agua.pdf | es_ES |
dc.description.references | Elci A, Molz FJ, Waldrop WR (2001) Implications of observed and simulated ambient flow in monitoring wells. Ground Water 39(6):853–862. doi: 10.1111/j.1745-6584.2001.tb02473.x | es_ES |
dc.description.references | Harbaugh AW, Banta ER, Hill MC, McDonal MG (2000) MODFLOW-2000, the US Geological Survey modular ground water model. User guide to modularization concepts and the ground water flow process. US Geological Survey Open-File Report 00-92 | es_ES |
dc.description.references | Konikow LF, Hornberger GZ (2006) Modelling effects of multimode wells on solute transport. Ground Water 44(5):648–660. doi: 10.1111/j.1745-6584.2006.00231.x | es_ES |
dc.description.references | Kozuskanich J, Novakowski KS, Anderson BC (2011) Fecal indicator bacteria variability in samples pumped from monitoring wells. Ground Water 49(1):43–52. doi: 10.1111/j.1745-6584.2010.00713.x | es_ES |
dc.description.references | Lacombe S, Sudicky EA, Frape SK, Unger AJ (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882. doi: 10.1029/95WR00661 | es_ES |
dc.description.references | Landon MK, Jurgens BC, Katz BG, EbertS SM, Burow KR, Crandall CA (2010) Depth dependent sampling to identify short-circuit pathways to public supply wells in multiple aquifer settings in the United States. Hydrogeol J 18(3):577–593. doi: 10.1007/s10040-009-0531-2 | es_ES |
dc.description.references | Ma R, Zheng C, Tonkin M, Zachara M (2011) Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions. J Contam Hydrol 123:11–19. doi: 10.1016/j.jconhyd.2010.12.001 | es_ES |
dc.description.references | Mayo L (2010) Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and water quality from long-screened wells: What is sampled an what is not? Hydrogeol J 18:823–837. doi: 10.1007/s10040-009-0568-2 | es_ES |
dc.description.references | Moratalla A, Gómez J, Heras J, Sanz D, Castaño S (2009) Nitrate in the water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water Resour Manag 23:1621–1640. doi: 10.1007/s11269-008-9344-7 | es_ES |
dc.description.references | Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276 | es_ES |
dc.description.references | Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—A review. J Environ Qual 22:392–402 | es_ES |
dc.description.references | Wolfe AH, Patz JA (2002) Reactive nitrogen and human health: acute and long term implications. J Hum-Environ Syst 31(2):120–125. doi: 10.1579/0044-7447-31.2.120 | es_ES |
dc.description.references | Zheng C, Wang P (1999) MT3DMS. Department of Geological Sciences, Army Corps of Engineers | es_ES |