- -

Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems

Show simple item record

Files in this item

dc.contributor.author Mejía, Amanda es_ES
dc.contributor.author Cassiraga, Eduardo Fabián es_ES
dc.contributor.author Sahuquillo Herráiz, Andrés es_ES
dc.date.accessioned 2015-06-02T18:02:58Z
dc.date.available 2015-06-02T18:02:58Z
dc.date.issued 2012
dc.identifier.issn 1874-8961
dc.identifier.uri http://hdl.handle.net/10251/51156
dc.description.abstract Nitrate concentrations in multi-aquifer systems are heavily affected by the presence of wellbores (active or abandoned) that are screened in several aquifers. The spatial variability of hydraulic conductivity in the confining layers has also an important impact on the concentrations. A synthetic three-dimensional flow and transport exercise was carried in a multi-aquifer system consisting of two aquifers separated by an aquitard in which 100 vertical wellbores had been drilled. To model the wellbores and the flow and transport connection between aquifers that they may induce, we assign a high vertical hydraulic conductivity and a low effective porosity to the cell blocks including the wells. With these parameters, a solute will travel quickly from one aquifer to the other without being stored in the well itself. The wellbores will act as preferential pathways, and the solute will move quickly between aquifers according to the hydrodynamic conditions. Not considering these preferential pathways could induce erroneous interpretations of the solute distribution in an aquifer. We also noted that when there are vertical wellbores that connect aquifers in a multi-aquifer system, low conductivity in the aquitard enhances the flow of solute through the wellbores. Time-varying pumping rates induce important fluctuations in nitrate concentrations; therefore, any estimate of the water quality of the aquifer will depend on the moment when the data has been recorded. Consequently, concentration maps obtained by interpolation of point samples are seldom a good indicator of the chemical status of groundwater bodies; alternatively, we recommend complementing the usual interpolated maps with numerical models to gain a true understanding of the spatial distribution of the solute concentration. © 2012 International Association for Mathematical Geosciences. es_ES
dc.description.sponsorship The studies in which this paper is based on have been partially funded by the Spanish MICIN (Ministerio de Ciencia e Innovacion) CGL2008-06394 C02-01 project. en_EN
dc.language Español es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Mathematical Geosciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Abandoned wells es_ES
dc.subject Aquifer es_ES
dc.subject Fast pathways es_ES
dc.subject Groundwater es_ES
dc.subject Nitrate es_ES
dc.subject Wellbores es_ES
dc.subject Aquitards es_ES
dc.subject Cell block es_ES
dc.subject Concentration maps es_ES
dc.subject Confining layers es_ES
dc.subject Effective porosity es_ES
dc.subject Fate and transport es_ES
dc.subject Flow and transport es_ES
dc.subject Hydrodynamic conditions es_ES
dc.subject Low conductivity es_ES
dc.subject Nitrate concentration es_ES
dc.subject Numerical models es_ES
dc.subject Preferential pathways es_ES
dc.subject Pumping rate es_ES
dc.subject Solute concentrations es_ES
dc.subject Solute distribution es_ES
dc.subject Spatial variability es_ES
dc.subject Three-dimensional flow es_ES
dc.subject Time varying es_ES
dc.subject Vertical hydraulic conductivities es_ES
dc.subject Well bore es_ES
dc.subject Aquifers es_ES
dc.subject Hydraulic conductivity es_ES
dc.subject Hydrogeology es_ES
dc.subject Indicators (chemical) es_ES
dc.subject Nitrates es_ES
dc.subject Oil field equipment es_ES
dc.subject Water quality es_ES
dc.subject Groundwater resources es_ES
dc.subject Concentration (composition) es_ES
dc.subject Interpolation es_ES
dc.subject Numerical model es_ES
dc.subject Spatial distribution es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11004-012-9388-3
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2008-06394-C02-01/ES/MODELADO DE LAS RELACIONES RIO-ACUIFERO. APLICACION AL SISTEMA DE LA MANCHA ORIENTAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Mejía, A.; Cassiraga, EF.; Sahuquillo Herráiz, A. (2012). Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems. Mathematical Geosciences. 44(2):227-238. https://doi.org/10.1007/s11004-012-9388-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11004-012-9388-3 es_ES
dc.description.upvformatpinicio 227 es_ES
dc.description.upvformatpfin 238 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 221655
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Arumí JL, Núñez J, Salgado L, Claret M (2006) Evaluación del riesgo de contaminación con nitrato de pozos de suministro de agua potable rural en Chile (zona de parral). Rev Panam Salud Pública 20:385–392. doi: 10.1590/S1020-49892006001100004 es_ES
dc.description.references Bonton A, Rouleau A, Bouchard C, Rodriguez M (2011) Nitrate transport modeling to evaluate source water protection scenarios for a municipal well in an agricultural area. Agric Syst 104:429–439. doi: 10.1016/j.agsy.2011.02.001 es_ES
dc.description.references Butler J, Whittemore D, Zhan X, Healey J (2004) Analysis of two pumping tests at the O’Rourke bridge site on the Arkansas River in Pawnee County, Kansas. Resources. KGS Open File Report 2004–32, Kansas Department of Agriculture, Division of Water. http://www.kgs.ku.edu/Hydro/Publications/2004/OFR04_32/larned_pumping.pdf es_ES
dc.description.references Carbó LI, Flores MC, Herrero MA (2009) Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires Argentina. Environ Geol 57:1489–1500. doi: 10.1007/s00254-008-1426-6 es_ES
dc.description.references Cionchi J, Redin I (2004) La contaminación del agua subterránea producida por las deficiencias constructivas en las perforaciones. Obras sanitarias MGP. Gerencia de Planificación y Administración de Recursos Hídricos—Obras Sanitarias Mar del Plata SE. Proyecto REDESAR. http://www.osmgp.gov.ar/web001/documentos/pdf/la_contaminacion_del_agua.pdf es_ES
dc.description.references Elci A, Molz FJ, Waldrop WR (2001) Implications of observed and simulated ambient flow in monitoring wells. Ground Water 39(6):853–862. doi: 10.1111/j.1745-6584.2001.tb02473.x es_ES
dc.description.references Harbaugh AW, Banta ER, Hill MC, McDonal MG (2000) MODFLOW-2000, the US Geological Survey modular ground water model. User guide to modularization concepts and the ground water flow process. US Geological Survey Open-File Report 00-92 es_ES
dc.description.references Konikow LF, Hornberger GZ (2006) Modelling effects of multimode wells on solute transport. Ground Water 44(5):648–660. doi: 10.1111/j.1745-6584.2006.00231.x es_ES
dc.description.references Kozuskanich J, Novakowski KS, Anderson BC (2011) Fecal indicator bacteria variability in samples pumped from monitoring wells. Ground Water 49(1):43–52. doi: 10.1111/j.1745-6584.2010.00713.x es_ES
dc.description.references Lacombe S, Sudicky EA, Frape SK, Unger AJ (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882. doi: 10.1029/95WR00661 es_ES
dc.description.references Landon MK, Jurgens BC, Katz BG, EbertS SM, Burow KR, Crandall CA (2010) Depth dependent sampling to identify short-circuit pathways to public supply wells in multiple aquifer settings in the United States. Hydrogeol J 18(3):577–593. doi: 10.1007/s10040-009-0531-2 es_ES
dc.description.references Ma R, Zheng C, Tonkin M, Zachara M (2011) Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions. J Contam Hydrol 123:11–19. doi: 10.1016/j.jconhyd.2010.12.001 es_ES
dc.description.references Mayo L (2010) Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and water quality from long-screened wells: What is sampled an what is not? Hydrogeol J 18:823–837. doi: 10.1007/s10040-009-0568-2 es_ES
dc.description.references Moratalla A, Gómez J, Heras J, Sanz D, Castaño S (2009) Nitrate in the water-supply wells in the Mancha Oriental Hydrogeological System (SE Spain). Water Resour Manag 23:1621–1640. doi: 10.1007/s11269-008-9344-7 es_ES
dc.description.references Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276 es_ES
dc.description.references Spalding RF, Exner ME (1993) Occurrence of nitrate in groundwater—A review. J Environ Qual 22:392–402 es_ES
dc.description.references Wolfe AH, Patz JA (2002) Reactive nitrogen and human health: acute and long term implications. J Hum-Environ Syst 31(2):120–125. doi: 10.1579/0044-7447-31.2.120 es_ES
dc.description.references Zheng C, Wang P (1999) MT3DMS. Department of Geological Sciences, Army Corps of Engineers es_ES


This item appears in the following Collection(s)

Show simple item record