- -

Solving continuous models with dependent uncertainty: a computational approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving continuous models with dependent uncertainty: a computational approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés López, Juan Carlos es_ES
dc.contributor.author Romero Bauset, José Vicente es_ES
dc.contributor.author Roselló Ferragud, María Dolores es_ES
dc.contributor.author Santonja, F. es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2015-06-03T11:27:02Z
dc.date.available 2015-06-03T11:27:02Z
dc.date.issued 2013
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/51212
dc.description.abstract This paper presents a computational study on a quasi-Galerkin projection-based method to deal with a class of systems of random ordinary differential equations (r.o.d.e.'s) which is assumed to depend on a finite number of random variables (r.v.'s). This class of systems of r.o.d.e.'s appears in different areas, particularly in epidemiology modelling. In contrast with the other available Galerkin-based techniques, such as the generalized Polynomial Chaos, the proposed method expands the solution directly in terms of the random inputs rather than auxiliary r.v.'s. Theoretically, Galerkin projection-based methods take advantage of orthogonality with the aim of simplifying the involved computations when solving r.o.d.e.'s, which means to compute both the solution and its main statistical functions such as the expectation and the standard deviation. This approach requires the previous determination of an orthonormal basis which, in practice, could become computationally burden and, as a consequence, could ruin the method. Motivated by this fact, we present a technique to deal with r.o.d.e.'s that avoids constructing an orthogonal basis and keeps computationally competitive even assuming statistical dependence among the random input parameters. Through a wide range of examples, including a classical epidemiologic model, we show the ability of the method to solve r.o.d.e.'s. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish M.C.Y.T. Grants: DPI2010-20891-C02-01 and FIS PI-10/01433; the Universitat Politecnica de Valencia Grant: PAID06-11-2070, and the Universitat de Valencia Grant: UV-INV-PRECOMP12-80708. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Stochastic differential equations es_ES
dc.subject Polynomial chaos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving continuous models with dependent uncertainty: a computational approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/983839
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PI-10%2F01433/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-2070/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UV//UV-INV-PRECOMP12-80708/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cortés López, JC.; Romero Bauset, JV.; Roselló Ferragud, MD.; Santonja, F.; Villanueva Micó, RJ. (2013). Solving continuous models with dependent uncertainty: a computational approach. Abstract and Applied Analysis. 2013:1-10. https://doi.org/10.1155/2013/983839 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/983839 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.relation.senia 251635
dc.identifier.eissn 1687-0409
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Ghanem, R. G., & Spanos, P. D. (1991). Stochastic Finite Elements: A Spectral Approach. doi:10.1007/978-1-4612-3094-6 es_ES
dc.description.references Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826 es_ES
dc.description.references Chen-Charpentier, B. M., & Stanescu, D. (2010). Epidemic models with random coefficients. Mathematical and Computer Modelling, 52(7-8), 1004-1010. doi:10.1016/j.mcm.2010.01.014 es_ES
dc.description.references Williams, M. M. R. (2006). Polynomial chaos functions and stochastic differential equations. Annals of Nuclear Energy, 33(9), 774-785. doi:10.1016/j.anucene.2006.04.005 es_ES
dc.description.references Weber, A., Weber, M., & Milligan, P. (2001). Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences, 172(2), 95-113. doi:10.1016/s0025-5564(01)00066-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem