Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés López, Juan Carlos | es_ES |
dc.contributor.author | Romero Bauset, José Vicente | es_ES |
dc.contributor.author | Roselló Ferragud, María Dolores | es_ES |
dc.contributor.author | Santonja, F. | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2015-06-03T11:27:02Z | |
dc.date.available | 2015-06-03T11:27:02Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/51212 | |
dc.description.abstract | This paper presents a computational study on a quasi-Galerkin projection-based method to deal with a class of systems of random ordinary differential equations (r.o.d.e.'s) which is assumed to depend on a finite number of random variables (r.v.'s). This class of systems of r.o.d.e.'s appears in different areas, particularly in epidemiology modelling. In contrast with the other available Galerkin-based techniques, such as the generalized Polynomial Chaos, the proposed method expands the solution directly in terms of the random inputs rather than auxiliary r.v.'s. Theoretically, Galerkin projection-based methods take advantage of orthogonality with the aim of simplifying the involved computations when solving r.o.d.e.'s, which means to compute both the solution and its main statistical functions such as the expectation and the standard deviation. This approach requires the previous determination of an orthonormal basis which, in practice, could become computationally burden and, as a consequence, could ruin the method. Motivated by this fact, we present a technique to deal with r.o.d.e.'s that avoids constructing an orthogonal basis and keeps computationally competitive even assuming statistical dependence among the random input parameters. Through a wide range of examples, including a classical epidemiologic model, we show the ability of the method to solve r.o.d.e.'s. | es_ES |
dc.description.sponsorship | This work has been partially supported by the Spanish M.C.Y.T. Grants: DPI2010-20891-C02-01 and FIS PI-10/01433; the Universitat Politecnica de Valencia Grant: PAID06-11-2070, and the Universitat de Valencia Grant: UV-INV-PRECOMP12-80708. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Stochastic differential equations | es_ES |
dc.subject | Polynomial chaos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving continuous models with dependent uncertainty: a computational approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2013/983839 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PI-10%2F01433/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-2070/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UV//UV-INV-PRECOMP12-80708/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20891-C02-01/ES/MODELIZACION Y METODOS NUMERICOS, ALEATORIOS Y DETERMINISTAS, PARA EL FILTRADO DE PARTICULAS DIESEL EN MOTORES DE COMBUSTION INTERNA SOBREALIMENTADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés López, JC.; Romero Bauset, JV.; Roselló Ferragud, MD.; Santonja, F.; Villanueva Micó, RJ. (2013). Solving continuous models with dependent uncertainty: a computational approach. Abstract and Applied Analysis. 2013:1-10. https://doi.org/10.1155/2013/983839 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2013/983839 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2013 | es_ES |
dc.relation.senia | 251635 | |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Ghanem, R. G., & Spanos, P. D. (1991). Stochastic Finite Elements: A Spectral Approach. doi:10.1007/978-1-4612-3094-6 | es_ES |
dc.description.references | Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826 | es_ES |
dc.description.references | Chen-Charpentier, B. M., & Stanescu, D. (2010). Epidemic models with random coefficients. Mathematical and Computer Modelling, 52(7-8), 1004-1010. doi:10.1016/j.mcm.2010.01.014 | es_ES |
dc.description.references | Williams, M. M. R. (2006). Polynomial chaos functions and stochastic differential equations. Annals of Nuclear Energy, 33(9), 774-785. doi:10.1016/j.anucene.2006.04.005 | es_ES |
dc.description.references | Weber, A., Weber, M., & Milligan, P. (2001). Modeling epidemics caused by respiratory syncytial virus (RSV). Mathematical Biosciences, 172(2), 95-113. doi:10.1016/s0025-5564(01)00066-9 | es_ES |