Mostrar el registro sencillo del ítem
dc.contributor.author | Lopez Orti, Jose Antonio | es_ES |
dc.contributor.author | Marco Castillo, Francisco José | es_ES |
dc.contributor.author | Martínez Uso, María José | es_ES |
dc.date.accessioned | 2015-06-04T07:23:07Z | |
dc.date.available | 2015-06-04T07:23:07Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/51224 | |
dc.description.abstract | The orbital motion around a central body is an interesting problem that involves the theory of artificial satellites and the planetary theories in the solar system. Nevertheless some difficult situations appear while studying this apparently simple problem, depending on each particular case. The real problem consists of searching the perturbed solution from a basic two-body motion problem. In addition, the perturbed problem must be solved using a numerical method and its efficiency depends on the selected coordinate system and the corresponding time. In fact, local and global errors are not necessarily homogeneously distributed over the orbit. In other words, there is a strong relationship between the spatial distribution of the selected points and the temporal independent variable. This is particularly dramatic in specially difficult cases. This issue leads us to consider different anomalies as temporal variables, searching for both precision and efficiency. Therefore, we are interested in the study of techniques to integrate the orbital motion equations using different anomalies as temporal variables which are functions of one or more parameters. The final aim of this paper is the minimization of the integration errors using an appropriate choice of the parameter depending on the eccentricity value in the family of the generalized Sundman anomalies. | es_ES |
dc.description.sponsorship | This research has been partially supported by Grant P1-06I455.01/1 from Bancaja. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | es_ES |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Transformations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2014/691926 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundación Bancaja//P1-061I455.01%2F1/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Lopez Orti, JA.; Marco Castillo, FJ.; Martínez Uso, MJ. (2014). A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion. Abstract and Applied Analysis. 2014:1-8. https://doi.org/10.1155/2014/691926 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2014 | es_ES |
dc.relation.senia | 269279 | |
dc.identifier.eissn | 1687-0409 | |
dc.contributor.funder | Fundación Bancaja | es_ES |
dc.description.references | Velez, C. E., & Hilinski, S. (1978). Time transformations and Cowell’s method. Celestial Mechanics, 17(1), 83-99. doi:10.1007/bf01261054 | es_ES |
dc.description.references | Nacozy, P. (1977). The intermediate anomaly. Celestial Mechanics, 16(3), 309-313. doi:10.1007/bf01232657 | es_ES |
dc.description.references | Ferr�ndiz, J. M., Ferrer, S., & Sein-Echaluce, M. L. (1987). Generalized elliptic anomalies. Celestial Mechanics, 40(3-4), 315-328. doi:10.1007/bf01235849 | es_ES |
dc.description.references | Brumberg, E. V. (1992). Length of arc as independent argument for highly eccentric orbits. Celestial Mechanics and Dynamical Astronomy, 53(4), 323-328. doi:10.1007/bf00051814 | es_ES |
dc.description.references | López Ortí, J. A., Gómez, V. A., & Rochera, M. B. (2012). A note on the use of the generalized Sundman transformations as temporal variables in celestial mechanics. International Journal of Computer Mathematics, 89(3), 433-442. doi:10.1080/00207160.2011.611502 | es_ES |
dc.description.references | Janin, G. (1974). Accurate computation of highly eccentric satellite orbits. Celestial Mechanics, 10(4), 451-467. doi:10.1007/bf01229121 | es_ES |
dc.description.references | Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. doi:10.1007/978-1-4757-2063-1 | es_ES |