- -

A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lopez Orti, Jose Antonio es_ES
dc.contributor.author Marco Castillo, Francisco José es_ES
dc.contributor.author Martínez Uso, María José es_ES
dc.date.accessioned 2015-06-04T07:23:07Z
dc.date.available 2015-06-04T07:23:07Z
dc.date.issued 2014
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/51224
dc.description.abstract The orbital motion around a central body is an interesting problem that involves the theory of artificial satellites and the planetary theories in the solar system. Nevertheless some difficult situations appear while studying this apparently simple problem, depending on each particular case. The real problem consists of searching the perturbed solution from a basic two-body motion problem. In addition, the perturbed problem must be solved using a numerical method and its efficiency depends on the selected coordinate system and the corresponding time. In fact, local and global errors are not necessarily homogeneously distributed over the orbit. In other words, there is a strong relationship between the spatial distribution of the selected points and the temporal independent variable. This is particularly dramatic in specially difficult cases. This issue leads us to consider different anomalies as temporal variables, searching for both precision and efficiency. Therefore, we are interested in the study of techniques to integrate the orbital motion equations using different anomalies as temporal variables which are functions of one or more parameters. The final aim of this paper is the minimization of the integration errors using an appropriate choice of the parameter depending on the eccentricity value in the family of the generalized Sundman anomalies. es_ES
dc.description.sponsorship This research has been partially supported by Grant P1-06I455.01/1 from Bancaja. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Transformations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/691926
dc.relation.projectID info:eu-repo/grantAgreement/Fundación Bancaja//P1-061I455.01%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Lopez Orti, JA.; Marco Castillo, FJ.; Martínez Uso, MJ. (2014). A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion. Abstract and Applied Analysis. 2014:1-8. https://doi.org/10.1155/2014/691926 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 269279
dc.identifier.eissn 1687-0409
dc.contributor.funder Fundación Bancaja es_ES
dc.description.references Velez, C. E., & Hilinski, S. (1978). Time transformations and Cowell’s method. Celestial Mechanics, 17(1), 83-99. doi:10.1007/bf01261054 es_ES
dc.description.references Nacozy, P. (1977). The intermediate anomaly. Celestial Mechanics, 16(3), 309-313. doi:10.1007/bf01232657 es_ES
dc.description.references Ferr�ndiz, J. M., Ferrer, S., & Sein-Echaluce, M. L. (1987). Generalized elliptic anomalies. Celestial Mechanics, 40(3-4), 315-328. doi:10.1007/bf01235849 es_ES
dc.description.references Brumberg, E. V. (1992). Length of arc as independent argument for highly eccentric orbits. Celestial Mechanics and Dynamical Astronomy, 53(4), 323-328. doi:10.1007/bf00051814 es_ES
dc.description.references López Ortí, J. A., Gómez, V. A., & Rochera, M. B. (2012). A note on the use of the generalized Sundman transformations as temporal variables in celestial mechanics. International Journal of Computer Mathematics, 89(3), 433-442. doi:10.1080/00207160.2011.611502 es_ES
dc.description.references Janin, G. (1974). Accurate computation of highly eccentric satellite orbits. Celestial Mechanics, 10(4), 451-467. doi:10.1007/bf01229121 es_ES
dc.description.references Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. doi:10.1007/978-1-4757-2063-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem