- -

A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion

Mostrar el registro completo del ítem

Lopez Orti, JA.; Marco Castillo, FJ.; Martínez Uso, MJ. (2014). A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion. Abstract and Applied Analysis. 2014:1-8. https://doi.org/10.1155/2014/691926

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51224

Ficheros en el ítem

Metadatos del ítem

Título: A note on the use of generalized sundman anomalies in the numerical integration of the elliptical orbital motion
Autor: Lopez Orti, Jose Antonio Marco Castillo, Francisco José Martínez Uso, María José
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
The orbital motion around a central body is an interesting problem that involves the theory of artificial satellites and the planetary theories in the solar system. Nevertheless some difficult situations appear while ...[+]
Palabras clave: Transformations
Derechos de uso: Reconocimiento (by)
Fuente:
Abstract and Applied Analysis. (issn: 1085-3375 ) (eissn: 1687-0409 )
DOI: 10.1155/2014/691926
Editorial:
Hindawi Publishing Corporation
Código del Proyecto:
info:eu-repo/grantAgreement/Fundación Bancaja//P1-061I455.01%2F1/
Agradecimientos:
This research has been partially supported by Grant P1-06I455.01/1 from Bancaja.
Tipo: Artículo

References

Velez, C. E., & Hilinski, S. (1978). Time transformations and Cowell’s method. Celestial Mechanics, 17(1), 83-99. doi:10.1007/bf01261054

Nacozy, P. (1977). The intermediate anomaly. Celestial Mechanics, 16(3), 309-313. doi:10.1007/bf01232657

Ferr�ndiz, J. M., Ferrer, S., & Sein-Echaluce, M. L. (1987). Generalized elliptic anomalies. Celestial Mechanics, 40(3-4), 315-328. doi:10.1007/bf01235849 [+]
Velez, C. E., & Hilinski, S. (1978). Time transformations and Cowell’s method. Celestial Mechanics, 17(1), 83-99. doi:10.1007/bf01261054

Nacozy, P. (1977). The intermediate anomaly. Celestial Mechanics, 16(3), 309-313. doi:10.1007/bf01232657

Ferr�ndiz, J. M., Ferrer, S., & Sein-Echaluce, M. L. (1987). Generalized elliptic anomalies. Celestial Mechanics, 40(3-4), 315-328. doi:10.1007/bf01235849

Brumberg, E. V. (1992). Length of arc as independent argument for highly eccentric orbits. Celestial Mechanics and Dynamical Astronomy, 53(4), 323-328. doi:10.1007/bf00051814

López Ortí, J. A., Gómez, V. A., & Rochera, M. B. (2012). A note on the use of the generalized Sundman transformations as temporal variables in celestial mechanics. International Journal of Computer Mathematics, 89(3), 433-442. doi:10.1080/00207160.2011.611502

Janin, G. (1974). Accurate computation of highly eccentric satellite orbits. Celestial Mechanics, 10(4), 451-467. doi:10.1007/bf01229121

Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. doi:10.1007/978-1-4757-2063-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem