- -

Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method

Show full item record

Bernal García, Á.; Miró Herrero, R.; Ginestar Peiro, D.; Verdú Martín, GJ. (2014). Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method. Abstract and Applied Analysis. 2014:1-15. doi:10.1155/2014/913043

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51227

Files in this item

Item Metadata

Title: Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method
Author:
UPV Unit: Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
Numerical methods are usually required to solve the neutron diffusion equation applied to nuclear reactors due to its heterogeneous nature. The most popular numerical techniques are the Finite Difference Method (FDM), the ...[+]
Subjects: Neutron Diffusion , Eigenvalue Problem , Finite Volume Method
Copyrigths: Reconocimiento (by)
Source:
Abstract and Applied Analysis. (issn: 1085-3375 ) (eissn: 1687-0409 )
DOI: 10.1155/2014/913043
Publisher:
Hindawi Publishing Corporation
Publisher version: http://dx.doi.org/10.1155/2014/913043
Thanks:
This work has been partially supported by the Spanish Ministerio de Ciencia e Innovacion under Projects ENE2011-22823 and ENE2012-34585, the Generalitat Valenciana under Projects PROMETEO/2010/039 and ACOMP/2013/237, and ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record