- -

Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernal García, Álvaro es_ES
dc.contributor.author Miró Herrero, Rafael es_ES
dc.contributor.author Ginestar Peiro, Damián es_ES
dc.contributor.author Verdú Martín, Gumersindo Jesús es_ES
dc.date.accessioned 2015-06-04T07:39:26Z
dc.date.available 2015-06-04T07:39:26Z
dc.date.issued 2014
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/51227
dc.description.abstract Numerical methods are usually required to solve the neutron diffusion equation applied to nuclear reactors due to its heterogeneous nature. The most popular numerical techniques are the Finite Difference Method (FDM), the Coarse Mesh Finite Difference Method (CFMD), the Nodal Expansion Method (NEM), and the Nodal Collocation Method (NCM), used virtually in all neutronic diffusion codes, which give accurate results in structured meshes. However, the application of these methods in unstructured meshes to deal with complex geometries is not straightforward and it may cause problems of stability and convergence of the solution. By contrast, the Finite Element Method (FEM) and the Finite Volume Method (FVM) are easily applied to unstructured meshes. On the one hand, the FEM can be accurate for smoothly varying functions. On the other hand, the FVM is typically used in the transport equations due to the conservation of the transported quantity within the volume. In this paper, the FVM algorithm implemented in the ARB Partial Differential Equations solver has been used to discretize the neutron diffusion equation to obtain the matrices of the generalized eigenvalue problem, which has been solved by means of the SLEPc library. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish Ministerio de Ciencia e Innovacion under Projects ENE2011-22823 and ENE2012-34585, the Generalitat Valenciana under Projects PROMETEO/2010/039 and ACOMP/2013/237, and the Universitat Politecnica de Valencia under Project UPPTE/2012/118. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Neutron Diffusion es_ES
dc.subject Eigenvalue Problem es_ES
dc.subject Finite Volume Method es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2014/913043
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2011-22823/ES/VALIUN-3D: VERIFICACION, VALIDACION, MEJORA Y CUANTIFICACION DE INCERTIDUMBRE EN CODIGOS 3D-NTH PARA ANALISIS DE SEGURIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F237/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F039/ES/ANITRAN: METODOLOGIA DE ANALISIS DE INCERTIDUMBRES APLICADA A TRANSITORIOS DE PLANTAS NUCLEARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2012-34585/ES/Desarrollo de una plataforma multifísica de altas prestaciones para simulaciones Termohidráulico-Neutrónicas en ingeniería nuclear/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPPTE%2F2012%2F118/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bernal García, Á.; Miró Herrero, R.; Ginestar Peiro, D.; Verdú Martín, GJ. (2014). Resolution of the generalized eigenvalue problem in the neutron diffusion equation discretized by the finite volume method. Abstract and Applied Analysis. 2014:1-15. https://doi.org/10.1155/2014/913043 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2014/913043 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2014 es_ES
dc.relation.senia 277697
dc.identifier.eissn 1687-0409
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8 es_ES
dc.description.references Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7 es_ES
dc.description.references Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 es_ES
dc.description.references Harvie, D. J. E. (2012). An implicit finite volume method for arbitrary transport equations. ANZIAM Journal, 52, 1126. doi:10.21914/anziamj.v52i0.3949 es_ES
dc.description.references Cueto-Felgueroso, L., Colominas, I., Nogueira, X., Navarrina, F., & Casteleiro, M. (2007). Finite volume solvers and Moving Least-Squares approximations for the compressible Navier–Stokes equations on unstructured grids. Computer Methods in Applied Mechanics and Engineering, 196(45-48), 4712-4736. doi:10.1016/j.cma.2007.06.003 es_ES
dc.description.references Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579 es_ES
dc.description.references Hernández, V., Román, J. E., & Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations. High Performance Computing for Computational Science — VECPAR 2002, 377-391. doi:10.1007/3-540-36569-9_25 es_ES
dc.description.references Müller, E. Z., & Weiss, Z. J. (1991). Benchmarking with the multigroup diffusion high-order response matrix method. Annals of Nuclear Energy, 18(9), 535-544. doi:10.1016/0306-4549(91)90098-i es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem