- -

Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author SILVA, C.S.R. es_ES
dc.contributor.author Luz, G.M. es_ES
dc.contributor.author Gamboa Martínez, Tatiana Carolina es_ES
dc.contributor.author Mano, Joao F es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Gómez Tejedor, José Antonio es_ES
dc.date.accessioned 2015-06-04T11:45:11Z
dc.date.available 2015-06-04T11:45:11Z
dc.date.issued 2014-04-15
dc.identifier.issn 0022-2348
dc.identifier.uri http://hdl.handle.net/10251/51249
dc.description.abstract Polycaprolactone scaffolds were produced by electrospinning. Polymeric solutions in a mix of dichloromethane and dimethylformamide were electrospun to form fibers in the sub-micron range. Physical properties of the polycaprolactone solutions were characterized with respect to density, viscosity, conductivity and surface tension. Processing was optimized following Taguchi's methodology to select the set of processing parameters that resulted in producing fibers with the smallest diameters, minimum number of defects and with the narrowest distribution of fiber diameter. Morphology of electrospun fibers was qualitatively and quantitatively analyzed for the different sets of processing parameters. The optimum conditions found to electrospun polycaprolactone were used to process polycaprolactone solutions containing nano-particles of hydroxyapatite or bioactive glass. Bioactivity of nano-composite electrospun membranes in simulated body fluid was analyzed and biological response was tested by assessing proliferation and viability of MT3C3-E1 preosteoblasts cultured on polycaprolactone and its nanocomposite membranes. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation through the MCINN-MAT2010-21611-C03-01 project. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Macromolecular Science Part B Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrospinning es_ES
dc.subject Poly(ɛ-caprolactone) es_ES
dc.subject Taguchi es_ES
dc.subject Nanoparticles es_ES
dc.subject Hydroxyapatite es_ES
dc.subject Bioactive glass es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00222348.2013.861304
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Silva, C.; Luz, G.; Gamboa Martínez, TC.; Mano, JF.; Gómez Ribelles, JL.; Gómez Tejedor, JA. (2014). Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology. Journal of Macromolecular Science Part B Physics. 53(5):781-799. https://doi.org/10.1080/00222348.2013.861304 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00222348.2013.861304 es_ES
dc.description.upvformatpinicio 781 es_ES
dc.description.upvformatpfin 799 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 253925
dc.identifier.eissn 1525-609X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5(8), 2884-2893. doi:10.1016/j.actbio.2009.05.007 es_ES
dc.description.references Kolambkar, Y. M., Peister, A., Ekaputra, A. K., Hutmacher, D. W., & Guldberg, R. E. (2010). Colonization and Osteogenic Differentiation of Different Stem Cell Sources on Electrospun Nanofiber Meshes. Tissue Engineering Part A, 16(10), 3219-3230. doi:10.1089/ten.tea.2010.0004 es_ES
dc.description.references Ruckh, T. T., Kumar, K., Kipper, M. J., & Popat, K. C. (2010). Osteogenic differentiation of bone marrow stromal cells on poly(ε-caprolactone) nanofiber scaffolds. Acta Biomaterialia, 6(8), 2949-2959. doi:10.1016/j.actbio.2010.02.006 es_ES
dc.description.references Cai, Y. Z., Wang, L. L., Cai, H. X., Qi, Y. Y., Zou, X. H., & Ouyang, H. W. (2010). Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. Journal of Biomedical Materials Research Part A, 95A(1), 49-57. doi:10.1002/jbm.a.32816 es_ES
dc.description.references Seyedjafari, E., Soleimani, M., Ghaemi, N., & Sarbolouki, M. N. (2010). Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. Journal of Materials Science: Materials in Medicine, 22(1), 165-174. doi:10.1007/s10856-010-4174-6 es_ES
dc.description.references Wang, B., Cai, Q., Zhang, S., Yang, X., & Deng, X. (2011). The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Journal of the Mechanical Behavior of Biomedical Materials, 4(4), 600-609. doi:10.1016/j.jmbbm.2011.01.008 es_ES
dc.description.references Martins, A., Alves da Silva, M. L., Faria, S., Marques, A. P., Reis, R. L., & Neves, N. M. (2011). The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis. Macromolecular Bioscience, 11(7), 978-987. doi:10.1002/mabi.201100012 es_ES
dc.description.references Patlolla, A., Collins, G., & Livingston Arinzeh, T. (2010). Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomaterialia, 6(1), 90-101. doi:10.1016/j.actbio.2009.07.028 es_ES
dc.description.references Garcia-Giralt, N., Izquierdo, R., Nogués, X., Perez-Olmedilla, M., Benito, P., Gómez-Ribelles, J. L., … Monllau, J. C. (2008). A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis. Journal of Biomedical Materials Research Part A, 85A(4), 1082-1089. doi:10.1002/jbm.a.31670 es_ES
dc.description.references Más Estellés, J., Vidaurre, A., Meseguer Dueñas, J. M., & Castilla Cortázar, I. (2007). Physical characterization of polycaprolactone scaffolds. Journal of Materials Science: Materials in Medicine, 19(1), 189-195. doi:10.1007/s10856-006-0101-2 es_ES
dc.description.references Causa, F., Netti, P. A., Ambrosio, L., Ciapetti, G., Baldini, N., Pagani, S., … Giunti, A. (2006). Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: In vitro characterization and human osteoblast response. Journal of Biomedical Materials Research Part A, 76A(1), 151-162. doi:10.1002/jbm.a.30528 es_ES
dc.description.references Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V. P., & Supaphol, P. (2009). Immobilization of Biomolecules on the Surface of Electrospun Polycaprolactone Fibrous Scaffolds for Tissue Engineering. ACS Applied Materials & Interfaces, 1(5), 1076-1085. doi:10.1021/am900048t es_ES
dc.description.references Marras, S. I., Kladi, K. P., Tsivintzelis, I., Zuburtikudis, I., & Panayiotou, C. (2008). Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomaterialia, 4(3), 756-765. doi:10.1016/j.actbio.2007.12.005 es_ES
dc.description.references Dai, X., & Shivkumar, S. (2007). Electrospinning of hydroxyapatite fibrous mats. Materials Letters, 61(13), 2735-2738. doi:10.1016/j.matlet.2006.07.195 es_ES
dc.description.references Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002 es_ES
dc.description.references Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., & Bowlin, G. L. (2007). Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59(14), 1413-1433. doi:10.1016/j.addr.2007.04.022 es_ES
dc.description.references Ducheyne, P. (1999). Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 20(23-24), 2287-2303. doi:10.1016/s0142-9612(99)00181-7 es_ES
dc.description.references Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002 es_ES
dc.description.references Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., & Selvamurugan, N. (2010). Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, 47(1), 1-4. doi:10.1016/j.ijbiomac.2010.03.015 es_ES
dc.description.references Wang, Y., Zhang, S., Zeng, X., Ma, L. L., Weng, W., Yan, W., & Qian, M. (2007). Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomaterialia, 3(2), 191-197. doi:10.1016/j.actbio.2006.10.002 es_ES
dc.description.references Shor, L., Güçeri, S., Wen, X., Gandhi, M., & Sun, W. (2007). Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, 28(35), 5291-5297. doi:10.1016/j.biomaterials.2007.08.018 es_ES
dc.description.references Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005 es_ES
dc.description.references Rizzi, S. C., Heath, D. J., Coombes, A. G. A., Bock, N., Textor, M., & Downes, S. (2001). Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. Journal of Biomedical Materials Research, 55(4), 475-486. doi:10.1002/1097-4636(20010615)55:4<475::aid-jbm1039>3.0.co;2-q es_ES
dc.description.references Kim, H.-M. (2003). Ceramic bioactivity and related biomimetic strategy. Current Opinion in Solid State and Materials Science, 7(4-5), 289-299. doi:10.1016/j.cossms.2003.09.014 es_ES
dc.description.references GUO, H., SU, J., WEI, J., KONG, H., & LIU, C. (2009). Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 5(1), 268-278. doi:10.1016/j.actbio.2008.07.018 es_ES
dc.description.references Wang, Y., Liu, L., & Guo, S. (2010). Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polymer Degradation and Stability, 95(2), 207-213. doi:10.1016/j.polymdegradstab.2009.11.023 es_ES
dc.description.references Peter, M., Binulal, N. S., Soumya, S., Nair, S. V., Furuike, T., Tamura, H., & Jayakumar, R. (2010). Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers, 79(2), 284-289. doi:10.1016/j.carbpol.2009.08.001 es_ES
dc.description.references Chen, Q. Z., Thompson, I. D., & Boccaccini, A. R. (2006). 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials, 27(11), 2414-2425. doi:10.1016/j.biomaterials.2005.11.025 es_ES
dc.description.references Nirmala, R., Nam, K. T., Park, D. K., Woo-il, B., Navamathavan, R., & Kim, H. Y. (2010). Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly(ε-caprolactone) nanofibers via electrospinning. Surface and Coatings Technology, 205(1), 174-181. doi:10.1016/j.surfcoat.2010.06.027 es_ES
dc.description.references Mavis, B., Demirtaş, T. T., Gümüşderelioğlu, M., Gündüz, G., & Çolak, Ü. (2009). Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomaterialia, 5(8), 3098-3111. doi:10.1016/j.actbio.2009.04.037 es_ES
dc.description.references Allo, B. A., Rizkalla, A. S., & Mequanint, K. (2010). Synthesis and Electrospinning of ε-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol−Gel Process. Langmuir, 26(23), 18340-18348. doi:10.1021/la102845k es_ES
dc.description.references Jegal, S.-H., Park, J.-H., Kim, J.-H., Kim, T.-H., Shin, U. S., Kim, T.-I., & Kim, H.-W. (2011). Functional composite nanofibers of poly(lactide–co-caprolactone) containing gelatin–apatite bone mimetic precipitate for bone regeneration. Acta Biomaterialia, 7(4), 1609-1617. doi:10.1016/j.actbio.2010.12.003 es_ES
dc.description.references Peng, F., Yu, X., & Wei, M. (2011). In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomaterialia, 7(6), 2585-2592. doi:10.1016/j.actbio.2011.02.021 es_ES
dc.description.references Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611 es_ES
dc.description.references Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425. doi:10.1016/j.polymer.2008.02.002 es_ES
dc.description.references Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. doi:10.1016/s0266-3538(03)00178-7 es_ES
dc.description.references Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913-6922. doi:10.1016/j.polymer.2007.09.017 es_ES
dc.description.references Wutticharoenmongkol, P., Sanchavanakit, N., Pavasant, P., & Supaphol, P. (2006). Novel Bone Scaffolds of Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Journal of Nanoscience and Nanotechnology, 6(2), 514-522. doi:10.1166/jnn.2006.090 es_ES
dc.description.references Cui, W., Li, X., Zhou, S., & Weng, J. (2006). Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 103(5), 3105-3112. doi:10.1002/app.25464 es_ES
dc.description.references Fong, H., Chun, I., & Reneker, D. . (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. doi:10.1016/s0032-3861(99)00068-3 es_ES
dc.description.references Gómez-Tejedor, J. A., Overberghe, N. V., Rico, P., & Ribelles, J. L. G. (2011). Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. European Polymer Journal, 47(2), 119-129. doi:10.1016/j.eurpolymj.2010.10.034 es_ES
dc.description.references Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030. doi:10.1016/j.polymer.2004.01.024 es_ES
dc.description.references Heikkilä, P., & Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44(10), 3067-3079. doi:10.1016/j.eurpolymj.2008.06.032 es_ES
dc.description.references Tehrani, A. H., Zadhoush, A., Karbasi, S., & Khorasani, S. N. (2010). Experimental investigation of the governing parameters in the electrospinning of poly(3-hydroxybutyrate) scaffolds: Structural characteristics of the pores. Journal of Applied Polymer Science, 118(5), 2682-2689. doi:10.1002/app.32620 es_ES
dc.description.references Patra, S. N., Easteal, A. J., & Bhattacharyya, D. (2009). Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning. Journal of Materials Science, 44(2), 647-654. doi:10.1007/s10853-008-3050-y es_ES
dc.description.references Rosa, J. L., Robin, A., Silva, M. B., Baldan, C. A., & Peres, M. P. (2009). Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology, 209(3), 1181-1188. doi:10.1016/j.jmatprotec.2008.03.021 es_ES
dc.description.references Maghsoodloo, S., Ozdemir, G., Jordan, V., & Huang, C.-H. (2004). Strengths and limitations of taguchi’s contributions to quality, manufacturing, and process engineering. Journal of Manufacturing Systems, 23(2), 73-126. doi:10.1016/s0278-6125(05)00004-x es_ES
dc.description.references Areias, A. C., Gómez-Tejedor, J. A., Sencadas, V., Alió, J., Ribelles, J. L. G., & Lanceros-Mendez, S. (2012). Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. Polymer Engineering & Science, 52(6), 1293-1300. doi:10.1002/pen.23070 es_ES
dc.description.references Hong, Z., Reis, R. L., & Mano, J. F. (2008). Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 4(5), 1297-1306. doi:10.1016/j.actbio.2008.03.007 es_ES
dc.description.references Hong, Z., Reis, R. L., & Mano, J. F. (2009). Preparation andin vitrocharacterization of novel bioactive glass ceramic nanoparticles. Journal of Biomedical Materials Research Part A, 88A(2), 304-313. doi:10.1002/jbm.a.31848 es_ES
dc.description.references Rekab, K., & Shaikh, M. (2005). Statistical Design of Experiments with Engineering Applications. doi:10.1201/b16326 es_ES
dc.description.references Wutticharoenmongkol, P., Sanchavanakit, N., Pavasant, P., & Supaphol, P. (2006). Preparation and Characterization of Novel Bone Scaffolds Based on Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Macromolecular Bioscience, 6(1), 70-77. doi:10.1002/mabi.200500150 es_ES
dc.description.references Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017 es_ES
dc.description.references Gamboa-Martínez, T. C., Gómez Ribelles, J. L., & Gallego Ferrer, G. (2011). Fibrin coating on poly (L-lactide) scaffolds for tissue engineering. Journal of Bioactive and Compatible Polymers, 26(5), 464-477. doi:10.1177/0883911511419834 es_ES
dc.description.references Khil, M.-S., Bhattarai, S. R., Kim, H.-Y., Kim, S.-Z., & Lee, K.-H. (2004). Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research, 72B(1), 117-124. doi:10.1002/jbm.b.30122 es_ES
dc.description.references Zamani, M., Morshed, M., Varshosaz, J., & Jannesari, M. (2010). Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. European Journal of Pharmaceutics and Biopharmaceutics, 75(2), 179-185. doi:10.1016/j.ejpb.2010.02.002 es_ES
dc.description.references Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R. (2003). Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294. doi:10.1016/s0032-3861(02)00820-0 es_ES
dc.description.references Ding, B., Li, C., Miyauchi, Y., Kuwaki, O., & Shiratori, S. (2006). Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology, 17(15), 3685-3691. doi:10.1088/0957-4484/17/15/011 es_ES
dc.description.references Demir, M. ., Yilgor, I., Yilgor, E., & Erman, B. (2002). Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309. doi:10.1016/s0032-3861(02)00136-2 es_ES
dc.description.references Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456-8466. doi:10.1021/ma020444a es_ES
dc.description.references Katti, D. S., Robinson, K. W., Ko, F. K., & Laurencin, C. T. (2004). Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research, 70B(2), 286-296. doi:10.1002/jbm.b.30041 es_ES
dc.description.references Zhao, S., Wu, X., Wang, L., & Huang, Y. (2003). Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 91(1), 242-246. doi:10.1002/app.13196 es_ES
dc.description.references Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 37(2), 573-578. doi:10.1021/ma0351975 es_ES
dc.description.references Lee, H.-H., Yu, H.-S., Jang, J.-H., & Kim, H.-W. (2008). Bioactivity improvement of poly(ε-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomaterialia, 4(3), 622-629. doi:10.1016/j.actbio.2007.10.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem