- -

Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology

Mostrar el registro completo del ítem

Silva, C.; Luz, G.; Gamboa Martínez, TC.; Mano, JF.; Gómez Ribelles, JL.; Gómez Tejedor, JA. (2014). Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology. Journal of Macromolecular Science Part B Physics. 53(5):781-799. https://doi.org/10.1080/00222348.2013.861304

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51249

Ficheros en el ítem

Metadatos del ítem

Título: Poly(epsilon-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology
Autor: SILVA, C.S.R. Luz, G.M. Gamboa Martínez, Tatiana Carolina Mano, Joao F Gómez Ribelles, José Luís Gómez Tejedor, José Antonio
Entidad UPV: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
Polycaprolactone scaffolds were produced by electrospinning. Polymeric solutions in a mix of dichloromethane and dimethylformamide were electrospun to form fibers in the sub-micron range. Physical properties of the ...[+]
Palabras clave: Electrospinning , Poly(ɛ-caprolactone) , Taguchi , Nanoparticles , Hydroxyapatite , Bioactive glass
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Macromolecular Science Part B Physics. (issn: 0022-2348 ) (eissn: 1525-609X )
DOI: 10.1080/00222348.2013.861304
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/00222348.2013.861304
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
Agradecimientos:
This work was supported by the Spanish Ministry of Science and Innovation through the MCINN-MAT2010-21611-C03-01 project.
Tipo: Artículo

References

Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5(8), 2884-2893. doi:10.1016/j.actbio.2009.05.007

Kolambkar, Y. M., Peister, A., Ekaputra, A. K., Hutmacher, D. W., & Guldberg, R. E. (2010). Colonization and Osteogenic Differentiation of Different Stem Cell Sources on Electrospun Nanofiber Meshes. Tissue Engineering Part A, 16(10), 3219-3230. doi:10.1089/ten.tea.2010.0004

Ruckh, T. T., Kumar, K., Kipper, M. J., & Popat, K. C. (2010). Osteogenic differentiation of bone marrow stromal cells on poly(ε-caprolactone) nanofiber scaffolds. Acta Biomaterialia, 6(8), 2949-2959. doi:10.1016/j.actbio.2010.02.006 [+]
Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5(8), 2884-2893. doi:10.1016/j.actbio.2009.05.007

Kolambkar, Y. M., Peister, A., Ekaputra, A. K., Hutmacher, D. W., & Guldberg, R. E. (2010). Colonization and Osteogenic Differentiation of Different Stem Cell Sources on Electrospun Nanofiber Meshes. Tissue Engineering Part A, 16(10), 3219-3230. doi:10.1089/ten.tea.2010.0004

Ruckh, T. T., Kumar, K., Kipper, M. J., & Popat, K. C. (2010). Osteogenic differentiation of bone marrow stromal cells on poly(ε-caprolactone) nanofiber scaffolds. Acta Biomaterialia, 6(8), 2949-2959. doi:10.1016/j.actbio.2010.02.006

Cai, Y. Z., Wang, L. L., Cai, H. X., Qi, Y. Y., Zou, X. H., & Ouyang, H. W. (2010). Electrospun nanofibrous matrix improves the regeneration of dense cortical bone. Journal of Biomedical Materials Research Part A, 95A(1), 49-57. doi:10.1002/jbm.a.32816

Seyedjafari, E., Soleimani, M., Ghaemi, N., & Sarbolouki, M. N. (2010). Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. Journal of Materials Science: Materials in Medicine, 22(1), 165-174. doi:10.1007/s10856-010-4174-6

Wang, B., Cai, Q., Zhang, S., Yang, X., & Deng, X. (2011). The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. Journal of the Mechanical Behavior of Biomedical Materials, 4(4), 600-609. doi:10.1016/j.jmbbm.2011.01.008

Martins, A., Alves da Silva, M. L., Faria, S., Marques, A. P., Reis, R. L., & Neves, N. M. (2011). The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis. Macromolecular Bioscience, 11(7), 978-987. doi:10.1002/mabi.201100012

Patlolla, A., Collins, G., & Livingston Arinzeh, T. (2010). Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomaterialia, 6(1), 90-101. doi:10.1016/j.actbio.2009.07.028

Garcia-Giralt, N., Izquierdo, R., Nogués, X., Perez-Olmedilla, M., Benito, P., Gómez-Ribelles, J. L., … Monllau, J. C. (2008). A porous PCL scaffold promotes the human chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis. Journal of Biomedical Materials Research Part A, 85A(4), 1082-1089. doi:10.1002/jbm.a.31670

Más Estellés, J., Vidaurre, A., Meseguer Dueñas, J. M., & Castilla Cortázar, I. (2007). Physical characterization of polycaprolactone scaffolds. Journal of Materials Science: Materials in Medicine, 19(1), 189-195. doi:10.1007/s10856-006-0101-2

Causa, F., Netti, P. A., Ambrosio, L., Ciapetti, G., Baldini, N., Pagani, S., … Giunti, A. (2006). Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: In vitro characterization and human osteoblast response. Journal of Biomedical Materials Research Part A, 76A(1), 151-162. doi:10.1002/jbm.a.30528

Mattanavee, W., Suwantong, O., Puthong, S., Bunaprasert, T., Hoven, V. P., & Supaphol, P. (2009). Immobilization of Biomolecules on the Surface of Electrospun Polycaprolactone Fibrous Scaffolds for Tissue Engineering. ACS Applied Materials & Interfaces, 1(5), 1076-1085. doi:10.1021/am900048t

Marras, S. I., Kladi, K. P., Tsivintzelis, I., Zuburtikudis, I., & Panayiotou, C. (2008). Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomaterialia, 4(3), 756-765. doi:10.1016/j.actbio.2007.12.005

Dai, X., & Shivkumar, S. (2007). Electrospinning of hydroxyapatite fibrous mats. Materials Letters, 61(13), 2735-2738. doi:10.1016/j.matlet.2006.07.195

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002

Barnes, C. P., Sell, S. A., Boland, E. D., Simpson, D. G., & Bowlin, G. L. (2007). Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59(14), 1413-1433. doi:10.1016/j.addr.2007.04.022

Ducheyne, P. (1999). Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 20(23-24), 2287-2303. doi:10.1016/s0142-9612(99)00181-7

Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002

Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., & Selvamurugan, N. (2010). Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, 47(1), 1-4. doi:10.1016/j.ijbiomac.2010.03.015

Wang, Y., Zhang, S., Zeng, X., Ma, L. L., Weng, W., Yan, W., & Qian, M. (2007). Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomaterialia, 3(2), 191-197. doi:10.1016/j.actbio.2006.10.002

Shor, L., Güçeri, S., Wen, X., Gandhi, M., & Sun, W. (2007). Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, 28(35), 5291-5297. doi:10.1016/j.biomaterials.2007.08.018

Wei, G., & Ma, P. X. (2004). Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials, 25(19), 4749-4757. doi:10.1016/j.biomaterials.2003.12.005

Rizzi, S. C., Heath, D. J., Coombes, A. G. A., Bock, N., Textor, M., & Downes, S. (2001). Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. Journal of Biomedical Materials Research, 55(4), 475-486. doi:10.1002/1097-4636(20010615)55:4<475::aid-jbm1039>3.0.co;2-q

Kim, H.-M. (2003). Ceramic bioactivity and related biomimetic strategy. Current Opinion in Solid State and Materials Science, 7(4-5), 289-299. doi:10.1016/j.cossms.2003.09.014

GUO, H., SU, J., WEI, J., KONG, H., & LIU, C. (2009). Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 5(1), 268-278. doi:10.1016/j.actbio.2008.07.018

Wang, Y., Liu, L., & Guo, S. (2010). Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro. Polymer Degradation and Stability, 95(2), 207-213. doi:10.1016/j.polymdegradstab.2009.11.023

Peter, M., Binulal, N. S., Soumya, S., Nair, S. V., Furuike, T., Tamura, H., & Jayakumar, R. (2010). Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers, 79(2), 284-289. doi:10.1016/j.carbpol.2009.08.001

Chen, Q. Z., Thompson, I. D., & Boccaccini, A. R. (2006). 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials, 27(11), 2414-2425. doi:10.1016/j.biomaterials.2005.11.025

Nirmala, R., Nam, K. T., Park, D. K., Woo-il, B., Navamathavan, R., & Kim, H. Y. (2010). Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly(ε-caprolactone) nanofibers via electrospinning. Surface and Coatings Technology, 205(1), 174-181. doi:10.1016/j.surfcoat.2010.06.027

Mavis, B., Demirtaş, T. T., Gümüşderelioğlu, M., Gündüz, G., & Çolak, Ü. (2009). Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomaterialia, 5(8), 3098-3111. doi:10.1016/j.actbio.2009.04.037

Allo, B. A., Rizkalla, A. S., & Mequanint, K. (2010). Synthesis and Electrospinning of ε-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol−Gel Process. Langmuir, 26(23), 18340-18348. doi:10.1021/la102845k

Jegal, S.-H., Park, J.-H., Kim, J.-H., Kim, T.-H., Shin, U. S., Kim, T.-I., & Kim, H.-W. (2011). Functional composite nanofibers of poly(lactide–co-caprolactone) containing gelatin–apatite bone mimetic precipitate for bone regeneration. Acta Biomaterialia, 7(4), 1609-1617. doi:10.1016/j.actbio.2010.12.003

Peng, F., Yu, X., & Wei, M. (2011). In vitro cell performance on hydroxyapatite particles/poly(l-lactic acid) nanofibrous scaffolds with an excellent particle along nanofiber orientation. Acta Biomaterialia, 7(6), 2585-2592. doi:10.1016/j.actbio.2011.02.021

Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611

Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387-2425. doi:10.1016/j.polymer.2008.02.002

Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. doi:10.1016/s0266-3538(03)00178-7

Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913-6922. doi:10.1016/j.polymer.2007.09.017

Wutticharoenmongkol, P., Sanchavanakit, N., Pavasant, P., & Supaphol, P. (2006). Novel Bone Scaffolds of Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Journal of Nanoscience and Nanotechnology, 6(2), 514-522. doi:10.1166/jnn.2006.090

Cui, W., Li, X., Zhou, S., & Weng, J. (2006). Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science, 103(5), 3105-3112. doi:10.1002/app.25464

Fong, H., Chun, I., & Reneker, D. . (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. doi:10.1016/s0032-3861(99)00068-3

Gómez-Tejedor, J. A., Overberghe, N. V., Rico, P., & Ribelles, J. L. G. (2011). Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. European Polymer Journal, 47(2), 119-129. doi:10.1016/j.eurpolymj.2010.10.034

Theron, S. A., Zussman, E., & Yarin, A. L. (2004). Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6), 2017-2030. doi:10.1016/j.polymer.2004.01.024

Heikkilä, P., & Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44(10), 3067-3079. doi:10.1016/j.eurpolymj.2008.06.032

Tehrani, A. H., Zadhoush, A., Karbasi, S., & Khorasani, S. N. (2010). Experimental investigation of the governing parameters in the electrospinning of poly(3-hydroxybutyrate) scaffolds: Structural characteristics of the pores. Journal of Applied Polymer Science, 118(5), 2682-2689. doi:10.1002/app.32620

Patra, S. N., Easteal, A. J., & Bhattacharyya, D. (2009). Parametric study of manufacturing poly(lactic) acid nanofibrous mat by electrospinning. Journal of Materials Science, 44(2), 647-654. doi:10.1007/s10853-008-3050-y

Rosa, J. L., Robin, A., Silva, M. B., Baldan, C. A., & Peres, M. P. (2009). Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology, 209(3), 1181-1188. doi:10.1016/j.jmatprotec.2008.03.021

Maghsoodloo, S., Ozdemir, G., Jordan, V., & Huang, C.-H. (2004). Strengths and limitations of taguchi’s contributions to quality, manufacturing, and process engineering. Journal of Manufacturing Systems, 23(2), 73-126. doi:10.1016/s0278-6125(05)00004-x

Areias, A. C., Gómez-Tejedor, J. A., Sencadas, V., Alió, J., Ribelles, J. L. G., & Lanceros-Mendez, S. (2012). Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. Polymer Engineering & Science, 52(6), 1293-1300. doi:10.1002/pen.23070

Hong, Z., Reis, R. L., & Mano, J. F. (2008). Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 4(5), 1297-1306. doi:10.1016/j.actbio.2008.03.007

Hong, Z., Reis, R. L., & Mano, J. F. (2009). Preparation andin vitrocharacterization of novel bioactive glass ceramic nanoparticles. Journal of Biomedical Materials Research Part A, 88A(2), 304-313. doi:10.1002/jbm.a.31848

Rekab, K., & Shaikh, M. (2005). Statistical Design of Experiments with Engineering Applications. doi:10.1201/b16326

Wutticharoenmongkol, P., Sanchavanakit, N., Pavasant, P., & Supaphol, P. (2006). Preparation and Characterization of Novel Bone Scaffolds Based on Electrospun Polycaprolactone Fibers Filled with Nanoparticles. Macromolecular Bioscience, 6(1), 70-77. doi:10.1002/mabi.200500150

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017

Gamboa-Martínez, T. C., Gómez Ribelles, J. L., & Gallego Ferrer, G. (2011). Fibrin coating on poly (L-lactide) scaffolds for tissue engineering. Journal of Bioactive and Compatible Polymers, 26(5), 464-477. doi:10.1177/0883911511419834

Khil, M.-S., Bhattarai, S. R., Kim, H.-Y., Kim, S.-Z., & Lee, K.-H. (2004). Novel fabricated matrix via electrospinning for tissue engineering. Journal of Biomedical Materials Research, 72B(1), 117-124. doi:10.1002/jbm.b.30122

Zamani, M., Morshed, M., Varshosaz, J., & Jannesari, M. (2010). Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. European Journal of Pharmaceutics and Biopharmaceutics, 75(2), 179-185. doi:10.1016/j.ejpb.2010.02.002

Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R. (2003). Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 44(4), 1287-1294. doi:10.1016/s0032-3861(02)00820-0

Ding, B., Li, C., Miyauchi, Y., Kuwaki, O., & Shiratori, S. (2006). Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology, 17(15), 3685-3691. doi:10.1088/0957-4484/17/15/011

Demir, M. ., Yilgor, I., Yilgor, E., & Erman, B. (2002). Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309. doi:10.1016/s0032-3861(02)00136-2

Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456-8466. doi:10.1021/ma020444a

Katti, D. S., Robinson, K. W., Ko, F. K., & Laurencin, C. T. (2004). Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research, 70B(2), 286-296. doi:10.1002/jbm.b.30041

Zhao, S., Wu, X., Wang, L., & Huang, Y. (2003). Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 91(1), 242-246. doi:10.1002/app.13196

Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 37(2), 573-578. doi:10.1021/ma0351975

Lee, H.-H., Yu, H.-S., Jang, J.-H., & Kim, H.-W. (2008). Bioactivity improvement of poly(ε-caprolactone) membrane with the addition of nanofibrous bioactive glass. Acta Biomaterialia, 4(3), 622-629. doi:10.1016/j.actbio.2007.10.013

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem