- -

Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guardiola García, Carlos es_ES
dc.contributor.author Plá Moreno, Benjamín es_ES
dc.contributor.author Blanco Rodríguez, David es_ES
dc.contributor.author Reig Bernad, Alberto es_ES
dc.date.accessioned 2015-06-05T07:24:45Z
dc.date.available 2015-06-05T07:24:45Z
dc.date.issued 2014
dc.identifier.issn 0020-7160
dc.identifier.uri http://hdl.handle.net/10251/51290
dc.description.abstract Perfect knowledge of future driving conditions can be rarely assumed on real applications when optimally splitting power demands among different energy sources in a hybrid electric vehicle. Since performance of a control strategy in terms of fuel economy and pollutant emissions is strongly affected by vehicle power requirements, accurate predictions of future driving conditions are needed. This paper proposes different methods to model driving patterns with a stochastic approach. All the addressed methods are based on the statistical analysis of previous driving patterns to predict future driving conditions, some of them employing standard vehicle sensors, while others require non-conventional sensors (for instance, global positioning system or inertial reference system). The different modelling techniques to estimate future driving conditions are evaluated with real driving data and optimal control methods, trading off model complexity with performance. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Computer Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HEV es_ES
dc.subject PHEV es_ES
dc.subject Energy Management es_ES
dc.subject Optimal control es_ES
dc.subject 93C06 es_ES
dc.subject 93E06 es_ES
dc.subject 60J06 es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00207160.2013.829567
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Guardiola García, C.; Plá Moreno, B.; Blanco Rodriguez, D.; Reig Bernad, A. (2014). Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles. International Journal of Computer Mathematics. 91(1):147-156. doi:10.1080/00207160.2013.829567 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00207160.2013.829567 es_ES
dc.description.upvformatpinicio 147 es_ES
dc.description.upvformatpfin 156 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 265522
dc.identifier.eissn 1029-0265
dc.description.references Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment, 6(5), 325-345. doi:10.1016/s1361-9209(01)00003-7 es_ES
dc.description.references Q. Gong, P. Tulpule, V. Marano, S. Midlam-Mohler, and G. Rizzoni,The role of ITS in PHEV performance improvement, 2011 American Control Conference, June–July, San Francisco, CA, 2011, pp. 2119–2124. es_ES
dc.description.references C. Guardiola, B. Pla, S. Onori, and G. Rizzoni,A new approach to optimally tune the control strategy for hybrid vehicles applications, IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling E-COSM’12, October, Rueil-Malmaison, France, 2012. es_ES
dc.description.references Johannesson, L., Asbogard, M., & Egardt, B. (2007). Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming. IEEE Transactions on Intelligent Transportation Systems, 8(1), 71-83. doi:10.1109/tits.2006.884887 es_ES
dc.description.references Liu, S., & Yao, B. (2008). Coordinate Control of Energy Saving Programmable Valves. IEEE Transactions on Control Systems Technology, 16(1), 34-45. doi:10.1109/tcst.2007.903073 es_ES
dc.description.references Paganelli, G. (2001). General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 22(4), 511-518. doi:10.1016/s0389-4304(01)00138-2 es_ES
dc.description.references Rizzoni, G., Guzzella, L., & Baumann, B. M. (1999). Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 4(3), 246-257. doi:10.1109/3516.789683 es_ES
dc.description.references Control of hybrid electric vehicles. (2007). IEEE Control Systems, 27(2), 60-70. doi:10.1109/mcs.2007.338280 es_ES
dc.description.references L. Serrao, S. Onori, and G. Rizzoni,ECMS as realization of Pontryagin's minimum principle for HEV control, 2009 American Control Conference, June, Saint Louis, MO, 2009, pp. 3964–3969. es_ES
dc.description.references Serrao, L., Onori, S., & Rizzoni, G. (2011). A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles. Journal of Dynamic Systems, Measurement, and Control, 133(3). doi:10.1115/1.4003267 es_ES
dc.description.references Stockar, S., Marano, V., Canova, M., Rizzoni, G., & Guzzella, L. (2011). Energy-Optimal Control of Plug-in Hybrid Electric Vehicles for Real-World Driving Cycles. IEEE Transactions on Vehicular Technology, 60(7), 2949-2962. doi:10.1109/tvt.2011.2158565 es_ES
dc.description.references Sundström, O., Ambühl, D., & Guzzella, L. (2009). On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints. Oil & Gas Science and Technology – Revue de l’Institut Français du Pétrole, 65(1), 91-102. doi:10.2516/ogst/2009020 es_ES
dc.description.references O. Sundström and L. Guzzella,A generic dynamic programming Matlab function, 18th IEEE International Conference on Control Applications Part of 2009 IEEE Multi-conference on Systems and Control, July, Saint Petersburg, 2009, pp. 1625–1630. es_ES
dc.description.references R. Wang and S.M. Lukic,Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles, Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, September 6–9, Raleigh, NC, 2011, pp. 1–7. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem