Mostrar el registro sencillo del ítem
dc.contributor.author | Guardiola García, Carlos | es_ES |
dc.contributor.author | Plá Moreno, Benjamín | es_ES |
dc.contributor.author | Blanco Rodríguez, David | es_ES |
dc.contributor.author | Reig Bernad, Alberto | es_ES |
dc.date.accessioned | 2015-06-05T07:24:45Z | |
dc.date.available | 2015-06-05T07:24:45Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0020-7160 | |
dc.identifier.uri | http://hdl.handle.net/10251/51290 | |
dc.description.abstract | Perfect knowledge of future driving conditions can be rarely assumed on real applications when optimally splitting power demands among different energy sources in a hybrid electric vehicle. Since performance of a control strategy in terms of fuel economy and pollutant emissions is strongly affected by vehicle power requirements, accurate predictions of future driving conditions are needed. This paper proposes different methods to model driving patterns with a stochastic approach. All the addressed methods are based on the statistical analysis of previous driving patterns to predict future driving conditions, some of them employing standard vehicle sensors, while others require non-conventional sensors (for instance, global positioning system or inertial reference system). The different modelling techniques to estimate future driving conditions are evaluated with real driving data and optimal control methods, trading off model complexity with performance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | International Journal of Computer Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | HEV | es_ES |
dc.subject | PHEV | es_ES |
dc.subject | Energy Management | es_ES |
dc.subject | Optimal control | es_ES |
dc.subject | 93C06 | es_ES |
dc.subject | 93E06 | es_ES |
dc.subject | 60J06 | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00207160.2013.829567 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Guardiola García, C.; Plá Moreno, B.; Blanco Rodriguez, D.; Reig Bernad, A. (2014). Modelling driving behaviour and its impact on the energy management problem in hybrid electric vehicles. International Journal of Computer Mathematics. 91(1):147-156. doi:10.1080/00207160.2013.829567 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00207160.2013.829567 | es_ES |
dc.description.upvformatpinicio | 147 | es_ES |
dc.description.upvformatpfin | 156 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 265522 | |
dc.identifier.eissn | 1029-0265 | |
dc.description.references | Ericsson, E. (2001). Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transportation Research Part D: Transport and Environment, 6(5), 325-345. doi:10.1016/s1361-9209(01)00003-7 | es_ES |
dc.description.references | Q. Gong, P. Tulpule, V. Marano, S. Midlam-Mohler, and G. Rizzoni,The role of ITS in PHEV performance improvement, 2011 American Control Conference, June–July, San Francisco, CA, 2011, pp. 2119–2124. | es_ES |
dc.description.references | C. Guardiola, B. Pla, S. Onori, and G. Rizzoni,A new approach to optimally tune the control strategy for hybrid vehicles applications, IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling E-COSM’12, October, Rueil-Malmaison, France, 2012. | es_ES |
dc.description.references | Johannesson, L., Asbogard, M., & Egardt, B. (2007). Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming. IEEE Transactions on Intelligent Transportation Systems, 8(1), 71-83. doi:10.1109/tits.2006.884887 | es_ES |
dc.description.references | Liu, S., & Yao, B. (2008). Coordinate Control of Energy Saving Programmable Valves. IEEE Transactions on Control Systems Technology, 16(1), 34-45. doi:10.1109/tcst.2007.903073 | es_ES |
dc.description.references | Paganelli, G. (2001). General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Review, 22(4), 511-518. doi:10.1016/s0389-4304(01)00138-2 | es_ES |
dc.description.references | Rizzoni, G., Guzzella, L., & Baumann, B. M. (1999). Unified modeling of hybrid electric vehicle drivetrains. IEEE/ASME Transactions on Mechatronics, 4(3), 246-257. doi:10.1109/3516.789683 | es_ES |
dc.description.references | Control of hybrid electric vehicles. (2007). IEEE Control Systems, 27(2), 60-70. doi:10.1109/mcs.2007.338280 | es_ES |
dc.description.references | L. Serrao, S. Onori, and G. Rizzoni,ECMS as realization of Pontryagin's minimum principle for HEV control, 2009 American Control Conference, June, Saint Louis, MO, 2009, pp. 3964–3969. | es_ES |
dc.description.references | Serrao, L., Onori, S., & Rizzoni, G. (2011). A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles. Journal of Dynamic Systems, Measurement, and Control, 133(3). doi:10.1115/1.4003267 | es_ES |
dc.description.references | Stockar, S., Marano, V., Canova, M., Rizzoni, G., & Guzzella, L. (2011). Energy-Optimal Control of Plug-in Hybrid Electric Vehicles for Real-World Driving Cycles. IEEE Transactions on Vehicular Technology, 60(7), 2949-2962. doi:10.1109/tvt.2011.2158565 | es_ES |
dc.description.references | Sundström, O., Ambühl, D., & Guzzella, L. (2009). On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints. Oil & Gas Science and Technology – Revue de l’Institut Français du Pétrole, 65(1), 91-102. doi:10.2516/ogst/2009020 | es_ES |
dc.description.references | O. Sundström and L. Guzzella,A generic dynamic programming Matlab function, 18th IEEE International Conference on Control Applications Part of 2009 IEEE Multi-conference on Systems and Control, July, Saint Petersburg, 2009, pp. 1625–1630. | es_ES |
dc.description.references | R. Wang and S.M. Lukic,Review of driving conditions prediction and driving style recognition based control algorithms for hybrid electric vehicles, Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, September 6–9, Raleigh, NC, 2011, pp. 1–7. | es_ES |