Mostrar el registro sencillo del ítem
dc.contributor.author | López García, Fernando | es_ES |
dc.contributor.author | Andreu García, Gabriela | es_ES |
dc.contributor.author | Blasco Ivars, José | es_ES |
dc.contributor.author | Aleixos Borrás, María Nuria | es_ES |
dc.contributor.author | Valiente González, José Miguel | es_ES |
dc.date.accessioned | 2015-06-05T11:06:36Z | |
dc.date.available | 2015-06-05T11:06:36Z | |
dc.date.issued | 2010-05 | |
dc.identifier.issn | 0168-1699 | |
dc.identifier.uri | http://hdl.handle.net/10251/51305 | |
dc.description.abstract | One of the main problems in the post-harvest processing of citrus is the detection of visual defects in order to classify the fruit depending on their appearance. Species and cultivars of citrus present a high rate of unpredictability in texture and colour that makes it difficult to develop a general, unsupervised method able of perform this task. In this paper we study the use of a general approach that was originally developed for the detection of defects in random colour textures. It is based on a Multivariate Image Analysis strategy and uses Principal Component Analysis to extract a reference eigenspace from a matrix built by unfolding colour and spatial data from samples of defect-free peel. Test images are also unfolded and projected onto the reference eigenspace and the result is a score matrix which is used to compute defective maps based on the T2 statistic. In addition, a multiresolution scheme is introduced in the original method to speed up the process. Unlike the techniques commonly used for the detection of defects in fruits, this is an unsupervised method that only needs a few samples to be trained. It is also a simple approach that is suitable for real-time compliance. Experimental work was performed on 120 samples of oranges and mandarins from four different cultivars: Clemenules, Marisol, Fortune, and Valencia. The success ratio for the detection of individual defects was 91.5%, while the classification ratio of damaged/sound samples was 94.2%. These results show that the studied method can be suitable for the task of citrus inspection. © 2010 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministry of Education (MEC) and by European FEDER funds, through the research projects DPI2007-66596-C02-01 (VISTAC) and DPI-2007-66596-C02-02. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers and Electronics in Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fruit Inspection | es_ES |
dc.subject | Automatic Quality Control | es_ES |
dc.subject | Multivariate Image Analysis | es_ES |
dc.subject | Principal Component Analysis | es_ES |
dc.subject | Unsupervised Methods | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compag.2010.02.001 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66596-C02-02/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//DPI2007-66596-C02-01/ES/INSPECCION Y DETECCION DE DEFECTOS EN MATERIALES Y PRODUCTOS CON TEXTURAS DE COLOR ALEATORIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.description.bibliographicCitation | López García, F.; Andreu García, G.; Blasco Ivars, J.; Aleixos Borrás, MN.; Valiente González, JM. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture. 71(2):189-197. doi:10.1016/j.compag.2010.02.001 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.compag.2010.02.001 | es_ES |
dc.description.upvformatpinicio | 189 | es_ES |
dc.description.upvformatpfin | 197 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 38776 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |