- -

Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López García, Fernando es_ES
dc.contributor.author Andreu García, Gabriela es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Valiente González, José Miguel es_ES
dc.date.accessioned 2015-06-05T11:06:36Z
dc.date.available 2015-06-05T11:06:36Z
dc.date.issued 2010-05
dc.identifier.issn 0168-1699
dc.identifier.uri http://hdl.handle.net/10251/51305
dc.description.abstract One of the main problems in the post-harvest processing of citrus is the detection of visual defects in order to classify the fruit depending on their appearance. Species and cultivars of citrus present a high rate of unpredictability in texture and colour that makes it difficult to develop a general, unsupervised method able of perform this task. In this paper we study the use of a general approach that was originally developed for the detection of defects in random colour textures. It is based on a Multivariate Image Analysis strategy and uses Principal Component Analysis to extract a reference eigenspace from a matrix built by unfolding colour and spatial data from samples of defect-free peel. Test images are also unfolded and projected onto the reference eigenspace and the result is a score matrix which is used to compute defective maps based on the T2 statistic. In addition, a multiresolution scheme is introduced in the original method to speed up the process. Unlike the techniques commonly used for the detection of defects in fruits, this is an unsupervised method that only needs a few samples to be trained. It is also a simple approach that is suitable for real-time compliance. Experimental work was performed on 120 samples of oranges and mandarins from four different cultivars: Clemenules, Marisol, Fortune, and Valencia. The success ratio for the detection of individual defects was 91.5%, while the classification ratio of damaged/sound samples was 94.2%. These results show that the studied method can be suitable for the task of citrus inspection. © 2010 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministry of Education (MEC) and by European FEDER funds, through the research projects DPI2007-66596-C02-01 (VISTAC) and DPI-2007-66596-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fruit Inspection es_ES
dc.subject Automatic Quality Control es_ES
dc.subject Multivariate Image Analysis es_ES
dc.subject Principal Component Analysis es_ES
dc.subject Unsupervised Methods es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2010.02.001
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66596-C02-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//DPI2007-66596-C02-01/ES/INSPECCION Y DETECCION DE DEFECTOS EN MATERIALES Y PRODUCTOS CON TEXTURAS DE COLOR ALEATORIAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation López García, F.; Andreu García, G.; Blasco Ivars, J.; Aleixos Borrás, MN.; Valiente González, JM. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture. 71(2):189-197. doi:10.1016/j.compag.2010.02.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.compag.2010.02.001 es_ES
dc.description.upvformatpinicio 189 es_ES
dc.description.upvformatpfin 197 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 38776
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Educación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem