- -

Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets

Show full item record

Fernández Fernández, I.; Gozálvez Zafrilla, JM.; Santafé Moros, MA. (2014). Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets. Desalination and Water Treatment. 1-10. doi:10.1080/19443994.2014.946714

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51310

Files in this item

Item Metadata

Title: Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets
Author: Fernández Fernández, Irene Gozálvez Zafrilla, José Marcial Santafé Moros, María Asunción
UPV Unit: Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
Nanofiltration (NF) models can be useful to perform optimal designs of membrane systems and to estimate membrane performance for waters. There is a special interest in obtaining NF models with parameters based on measurable ...[+]
Subjects: Nanofiltration , DSPM-DE model , Model fitting
Copyrigths: Reserva de todos los derechos
Source:
Desalination and Water Treatment. (issn: 1944-3994 ) (eissn: 1944-3986 )
DOI: 10.1080/19443994.2014.946714
Publisher:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Publisher version: http://dx.doi.org/10.1080/19443994.2014.946714
Project ID:
Ministry for Economy and Competitiveness [CTM2010-20248 (Project OPTIMEM)], [BES-2011-049230]
Thanks:
This work was supported by the Ministry for Economy and Competitiveness [CTM2010-20248 (Project OPTIMEM)], [BES-2011-049230].
Type: Artículo

References

Bowen, W. R., & Mukhtar, H. (1996). Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science, 112(2), 263-274. doi:10.1016/0376-7388(95)00302-9

Bowen, W. R., & Welfoot, J. S. (2002). Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science, 57(7), 1121-1137. doi:10.1016/s0009-2509(01)00413-4

Otero, J. A., Mazarrasa, O., Villasante, J., Silva, V., Prádanos, P., Calvo, J. I., & Hernández, A. (2008). Three independent ways to obtain information on pore size distributions of nanofiltration membranes. Journal of Membrane Science, 309(1-2), 17-27. doi:10.1016/j.memsci.2007.09.065 [+]
Bowen, W. R., & Mukhtar, H. (1996). Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science, 112(2), 263-274. doi:10.1016/0376-7388(95)00302-9

Bowen, W. R., & Welfoot, J. S. (2002). Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science, 57(7), 1121-1137. doi:10.1016/s0009-2509(01)00413-4

Otero, J. A., Mazarrasa, O., Villasante, J., Silva, V., Prádanos, P., Calvo, J. I., & Hernández, A. (2008). Three independent ways to obtain information on pore size distributions of nanofiltration membranes. Journal of Membrane Science, 309(1-2), 17-27. doi:10.1016/j.memsci.2007.09.065

Kotrappanavar, N. S., Hussain, A. A., Abashar, M. E. E., Al-Mutaz, I. S., Aminabhavi, T. M., & Nadagouda, M. N. (2011). Prediction of physical properties of nanofiltration membranes for neutral and charged solutes. Desalination, 280(1-3), 174-182. doi:10.1016/j.desal.2011.07.007

Straatsma, J., Bargeman, G., van der Horst, H. C., & Wesselingh, J. A. (2002). Can nanofiltration be fully predicted by a model? Journal of Membrane Science, 198(2), 273-284. doi:10.1016/s0376-7388(01)00669-x

Wilks, S. S. (1941). Determination of Sample Sizes for Setting Tolerance Limits. The Annals of Mathematical Statistics, 12(1), 91-96. doi:10.1214/aoms/1177731788

Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372(1-2), 145-153. doi:10.1016/j.memsci.2011.01.066

Bargeman, G., Vollenbroek, J. M., Straatsma, J., Schroën, C. G. P. H., & Boom, R. M. (2005). Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. Journal of Membrane Science, 247(1-2), 11-20. doi:10.1016/j.memsci.2004.05.022

Cavaco Morão, A. I., Szymczyk, A., Fievet, P., & Brites Alves, A. M. (2008). Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process. Journal of Membrane Science, 322(2), 320-330. doi:10.1016/j.memsci.2008.06.003

Afonso, M. (2001). Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Separation and Purification Technology, 22-23(1-2), 529-541. doi:10.1016/s1383-5866(00)00135-0

Hussain, A. A., Nataraj, S. K., Abashar, M. E. E., Al-Mutaz, I. S., & Aminabhavi, T. M. (2008). Prediction of physical properties of nanofiltration membranes using experiment and theoretical models☆. Journal of Membrane Science, 310(1-2), 321-336. doi:10.1016/j.memsci.2007.11.005

Nguyen, N. C., Chen, S.-S., Hsu, H.-T., & Li, C.-W. (2013). Separation of three divalent cations (Cu2+, Co2+ and Ni2+) by NF membranes from pHs3 to 5. Desalination, 328, 51-57. doi:10.1016/j.desal.2013.08.011

Wang, D.-X., Wang, X.-L., Tomi, Y., Ando, M., & Shintani, T. (2006). Modeling the separation performance of nanofiltration membranes for the mixed salts solution. Journal of Membrane Science, 280(1-2), 734-743. doi:10.1016/j.memsci.2006.02.032

Nanda, D., Tung, K.-L., Hsiung, C.-C., Chuang, C.-J., Ruaan, R.-C., Chiang, Y.-C., … Wu, T.-H. (2008). Effect of solution chemistry on water softening using charged nanofiltration membranes. Desalination, 234(1-3), 344-353. doi:10.1016/j.desal.2007.09.103

Lin, Y.-L., Chiang, P.-C., & Chang, E.-E. (2007). Removal of small trihalomethane precursors from aqueous solution by nanofiltration. Journal of Hazardous Materials, 146(1-2), 20-29. doi:10.1016/j.jhazmat.2006.11.050

[-]

This item appears in the following Collection(s)

Show full item record