- -

Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Fernández, Irene es_ES
dc.contributor.author Gozálvez Zafrilla, José Marcial es_ES
dc.contributor.author Santafé Moros, María Asunción es_ES
dc.date.accessioned 2015-06-05T11:35:12Z
dc.date.available 2015-06-05T11:35:12Z
dc.date.issued 2014-07-16
dc.identifier.issn 1944-3994
dc.identifier.uri http://hdl.handle.net/10251/51310
dc.description.abstract Nanofiltration (NF) models can be useful to perform optimal designs of membrane systems and to estimate membrane performance for waters. There is a special interest in obtaining NF models with parameters based on measurable properties of the membrane and independent from the feed and operating conditions. However, many times, from a practical point of view, NF parameters can be directly fitted from experiments performed with salts in a range of compositions. The aim of this study is to select the better combination of experiments to yield a suitable fitting for the NF model Donnan steric-partitioning pore model with dielectric exclusion (DSPM-DE). In our case, the best fitting for a specific group of waters is searched (groundwater belonging to a Mediterranean region with moderate salinity). The first part of the work is devoted to study which combinations of salts and concentrations lead to higher information. Using known values of NF parameters, permselective results were computationally generated using the NF model for a huge number of different combinations of compositions and random parameter sets. Performance factors for permeate flux and rejection based on the comparison between the characterization groups and a control group were defined. The second part of the work focused on the experimental validation of the selection procedure. The results showed that there are characterization sets (composition and operating conditions) that yield higher fitting performance. These combinations of experiments should be the preferred ones, when direct fitting from experiments is going to be performed. es_ES
dc.description.sponsorship This work was supported by the Ministry for Economy and Competitiveness [CTM2010-20248 (Project OPTIMEM)], [BES-2011-049230]. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof Desalination and Water Treatment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanofiltration es_ES
dc.subject DSPM-DE model es_ES
dc.subject Model fitting es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19443994.2014.946714
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2010-20248/ES/SIMULACION Y OPTIMIZACION MEDIANTE ALGORITMOS GENETICOS DE PROCESOS DE MEMBRANAS PARA EL TRATAMIENTO Y RECUPERACION DE AGUAS SALOBRES/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-049230/ES/BES-2011-049230/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Fernández Fernández, I.; Gozálvez Zafrilla, JM.; Santafé Moros, MA. (2014). Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets. Desalination and Water Treatment. 1-10. doi:10.1080/19443994.2014.946714 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/19443994.2014.946714 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 269159
dc.identifier.eissn 1944-3986
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bowen, W. R., & Mukhtar, H. (1996). Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science, 112(2), 263-274. doi:10.1016/0376-7388(95)00302-9 es_ES
dc.description.references Bowen, W. R., & Welfoot, J. S. (2002). Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science, 57(7), 1121-1137. doi:10.1016/s0009-2509(01)00413-4 es_ES
dc.description.references Otero, J. A., Mazarrasa, O., Villasante, J., Silva, V., Prádanos, P., Calvo, J. I., & Hernández, A. (2008). Three independent ways to obtain information on pore size distributions of nanofiltration membranes. Journal of Membrane Science, 309(1-2), 17-27. doi:10.1016/j.memsci.2007.09.065 es_ES
dc.description.references Kotrappanavar, N. S., Hussain, A. A., Abashar, M. E. E., Al-Mutaz, I. S., Aminabhavi, T. M., & Nadagouda, M. N. (2011). Prediction of physical properties of nanofiltration membranes for neutral and charged solutes. Desalination, 280(1-3), 174-182. doi:10.1016/j.desal.2011.07.007 es_ES
dc.description.references Straatsma, J., Bargeman, G., van der Horst, H. C., & Wesselingh, J. A. (2002). Can nanofiltration be fully predicted by a model? Journal of Membrane Science, 198(2), 273-284. doi:10.1016/s0376-7388(01)00669-x es_ES
dc.description.references Wilks, S. S. (1941). Determination of Sample Sizes for Setting Tolerance Limits. The Annals of Mathematical Statistics, 12(1), 91-96. doi:10.1214/aoms/1177731788 es_ES
dc.description.references Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372(1-2), 145-153. doi:10.1016/j.memsci.2011.01.066 es_ES
dc.description.references Bargeman, G., Vollenbroek, J. M., Straatsma, J., Schroën, C. G. P. H., & Boom, R. M. (2005). Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. Journal of Membrane Science, 247(1-2), 11-20. doi:10.1016/j.memsci.2004.05.022 es_ES
dc.description.references Cavaco Morão, A. I., Szymczyk, A., Fievet, P., & Brites Alves, A. M. (2008). Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process. Journal of Membrane Science, 322(2), 320-330. doi:10.1016/j.memsci.2008.06.003 es_ES
dc.description.references Afonso, M. (2001). Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Separation and Purification Technology, 22-23(1-2), 529-541. doi:10.1016/s1383-5866(00)00135-0 es_ES
dc.description.references Hussain, A. A., Nataraj, S. K., Abashar, M. E. E., Al-Mutaz, I. S., & Aminabhavi, T. M. (2008). Prediction of physical properties of nanofiltration membranes using experiment and theoretical models☆. Journal of Membrane Science, 310(1-2), 321-336. doi:10.1016/j.memsci.2007.11.005 es_ES
dc.description.references Nguyen, N. C., Chen, S.-S., Hsu, H.-T., & Li, C.-W. (2013). Separation of three divalent cations (Cu2+, Co2+ and Ni2+) by NF membranes from pHs3 to 5. Desalination, 328, 51-57. doi:10.1016/j.desal.2013.08.011 es_ES
dc.description.references Wang, D.-X., Wang, X.-L., Tomi, Y., Ando, M., & Shintani, T. (2006). Modeling the separation performance of nanofiltration membranes for the mixed salts solution. Journal of Membrane Science, 280(1-2), 734-743. doi:10.1016/j.memsci.2006.02.032 es_ES
dc.description.references Nanda, D., Tung, K.-L., Hsiung, C.-C., Chuang, C.-J., Ruaan, R.-C., Chiang, Y.-C., … Wu, T.-H. (2008). Effect of solution chemistry on water softening using charged nanofiltration membranes. Desalination, 234(1-3), 344-353. doi:10.1016/j.desal.2007.09.103 es_ES
dc.description.references Lin, Y.-L., Chiang, P.-C., & Chang, E.-E. (2007). Removal of small trihalomethane precursors from aqueous solution by nanofiltration. Journal of Hazardous Materials, 146(1-2), 20-29. doi:10.1016/j.jhazmat.2006.11.050 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem