Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández Fernández, Irene | es_ES |
dc.contributor.author | Gozálvez Zafrilla, José Marcial | es_ES |
dc.contributor.author | Santafé Moros, María Asunción | es_ES |
dc.date.accessioned | 2015-06-05T11:35:12Z | |
dc.date.available | 2015-06-05T11:35:12Z | |
dc.date.issued | 2014-07-16 | |
dc.identifier.issn | 1944-3994 | |
dc.identifier.uri | http://hdl.handle.net/10251/51310 | |
dc.description.abstract | Nanofiltration (NF) models can be useful to perform optimal designs of membrane systems and to estimate membrane performance for waters. There is a special interest in obtaining NF models with parameters based on measurable properties of the membrane and independent from the feed and operating conditions. However, many times, from a practical point of view, NF parameters can be directly fitted from experiments performed with salts in a range of compositions. The aim of this study is to select the better combination of experiments to yield a suitable fitting for the NF model Donnan steric-partitioning pore model with dielectric exclusion (DSPM-DE). In our case, the best fitting for a specific group of waters is searched (groundwater belonging to a Mediterranean region with moderate salinity). The first part of the work is devoted to study which combinations of salts and concentrations lead to higher information. Using known values of NF parameters, permselective results were computationally generated using the NF model for a huge number of different combinations of compositions and random parameter sets. Performance factors for permeate flux and rejection based on the comparison between the characterization groups and a control group were defined. The second part of the work focused on the experimental validation of the selection procedure. The results showed that there are characterization sets (composition and operating conditions) that yield higher fitting performance. These combinations of experiments should be the preferred ones, when direct fitting from experiments is going to be performed. | es_ES |
dc.description.sponsorship | This work was supported by the Ministry for Economy and Competitiveness [CTM2010-20248 (Project OPTIMEM)], [BES-2011-049230]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis: STM, Behavioural Science and Public Health Titles | es_ES |
dc.relation.ispartof | Desalination and Water Treatment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanofiltration | es_ES |
dc.subject | DSPM-DE model | es_ES |
dc.subject | Model fitting | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/19443994.2014.946714 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2010-20248/ES/SIMULACION Y OPTIMIZACION MEDIANTE ALGORITMOS GENETICOS DE PROCESOS DE MEMBRANAS PARA EL TRATAMIENTO Y RECUPERACION DE AGUAS SALOBRES/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-049230/ES/BES-2011-049230/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Fernández Fernández, I.; Gozálvez Zafrilla, JM.; Santafé Moros, MA. (2014). Efficient fitting of nanofiltration model parameters for a specified groundwater type by selecting suitable characterization data-sets. Desalination and Water Treatment. 1-10. doi:10.1080/19443994.2014.946714 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/19443994.2014.946714 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 269159 | |
dc.identifier.eissn | 1944-3986 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Bowen, W. R., & Mukhtar, H. (1996). Characterisation and prediction of separation performance of nanofiltration membranes. Journal of Membrane Science, 112(2), 263-274. doi:10.1016/0376-7388(95)00302-9 | es_ES |
dc.description.references | Bowen, W. R., & Welfoot, J. S. (2002). Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science, 57(7), 1121-1137. doi:10.1016/s0009-2509(01)00413-4 | es_ES |
dc.description.references | Otero, J. A., Mazarrasa, O., Villasante, J., Silva, V., Prádanos, P., Calvo, J. I., & Hernández, A. (2008). Three independent ways to obtain information on pore size distributions of nanofiltration membranes. Journal of Membrane Science, 309(1-2), 17-27. doi:10.1016/j.memsci.2007.09.065 | es_ES |
dc.description.references | Kotrappanavar, N. S., Hussain, A. A., Abashar, M. E. E., Al-Mutaz, I. S., Aminabhavi, T. M., & Nadagouda, M. N. (2011). Prediction of physical properties of nanofiltration membranes for neutral and charged solutes. Desalination, 280(1-3), 174-182. doi:10.1016/j.desal.2011.07.007 | es_ES |
dc.description.references | Straatsma, J., Bargeman, G., van der Horst, H. C., & Wesselingh, J. A. (2002). Can nanofiltration be fully predicted by a model? Journal of Membrane Science, 198(2), 273-284. doi:10.1016/s0376-7388(01)00669-x | es_ES |
dc.description.references | Wilks, S. S. (1941). Determination of Sample Sizes for Setting Tolerance Limits. The Annals of Mathematical Statistics, 12(1), 91-96. doi:10.1214/aoms/1177731788 | es_ES |
dc.description.references | Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372(1-2), 145-153. doi:10.1016/j.memsci.2011.01.066 | es_ES |
dc.description.references | Bargeman, G., Vollenbroek, J. M., Straatsma, J., Schroën, C. G. P. H., & Boom, R. M. (2005). Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention. Journal of Membrane Science, 247(1-2), 11-20. doi:10.1016/j.memsci.2004.05.022 | es_ES |
dc.description.references | Cavaco Morão, A. I., Szymczyk, A., Fievet, P., & Brites Alves, A. M. (2008). Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process. Journal of Membrane Science, 322(2), 320-330. doi:10.1016/j.memsci.2008.06.003 | es_ES |
dc.description.references | Afonso, M. (2001). Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Separation and Purification Technology, 22-23(1-2), 529-541. doi:10.1016/s1383-5866(00)00135-0 | es_ES |
dc.description.references | Hussain, A. A., Nataraj, S. K., Abashar, M. E. E., Al-Mutaz, I. S., & Aminabhavi, T. M. (2008). Prediction of physical properties of nanofiltration membranes using experiment and theoretical models☆. Journal of Membrane Science, 310(1-2), 321-336. doi:10.1016/j.memsci.2007.11.005 | es_ES |
dc.description.references | Nguyen, N. C., Chen, S.-S., Hsu, H.-T., & Li, C.-W. (2013). Separation of three divalent cations (Cu2+, Co2+ and Ni2+) by NF membranes from pHs3 to 5. Desalination, 328, 51-57. doi:10.1016/j.desal.2013.08.011 | es_ES |
dc.description.references | Wang, D.-X., Wang, X.-L., Tomi, Y., Ando, M., & Shintani, T. (2006). Modeling the separation performance of nanofiltration membranes for the mixed salts solution. Journal of Membrane Science, 280(1-2), 734-743. doi:10.1016/j.memsci.2006.02.032 | es_ES |
dc.description.references | Nanda, D., Tung, K.-L., Hsiung, C.-C., Chuang, C.-J., Ruaan, R.-C., Chiang, Y.-C., … Wu, T.-H. (2008). Effect of solution chemistry on water softening using charged nanofiltration membranes. Desalination, 234(1-3), 344-353. doi:10.1016/j.desal.2007.09.103 | es_ES |
dc.description.references | Lin, Y.-L., Chiang, P.-C., & Chang, E.-E. (2007). Removal of small trihalomethane precursors from aqueous solution by nanofiltration. Journal of Hazardous Materials, 146(1-2), 20-29. doi:10.1016/j.jhazmat.2006.11.050 | es_ES |