- -

New Insight into the Transcarbamylase Family: TheStructure of Putrescine Transcarbamylase, a Key Catalystfor Fermentative Utilization of Agmatine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New Insight into the Transcarbamylase Family: TheStructure of Putrescine Transcarbamylase, a Key Catalystfor Fermentative Utilization of Agmatine

Mostrar el registro completo del ítem

Polo, LM.; Gil Ortíz, F.; Cantin Sanz, A.; Rubio, V. (2012). New Insight into the Transcarbamylase Family: TheStructure of Putrescine Transcarbamylase, a Key Catalystfor Fermentative Utilization of Agmatine. PLoS ONE. 7(2):31528-31543. https://doi.org/10.1371/journal.pone.0031528

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51405

Ficheros en el ítem

Metadatos del ítem

Título: New Insight into the Transcarbamylase Family: TheStructure of Putrescine Transcarbamylase, a Key Catalystfor Fermentative Utilization of Agmatine
Autor: Polo, Luis Mariano Gil Ortíz, Fernando Cantin Sanz, Angel Rubio, Vicente
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0031528
Editorial:
Public Library of Science
Versión del editor: http://dx.doi.org/10.1371/journal.pone.0031528
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BFU2008-05021/ES/COMPLEJOS MACROMOLECULARES, PLURIEMPLEO E IMPLICACIONES EN ENFERMEDADES RARAS DE LOS MIEMBROS DE LA FAMILIA AMINOACIDO QUINASA/
info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F051/ES/Genes, proteínas y rutas de señalización en enfermedades raras (Biomeder)/
Agradecimientos:
This work was supported by grants BFU2008-05021 of the Spanish Ministry for Science and Prometeo/2009/051 of the Valencian Government. The European Union and the European Molecular Biology Laboratory funded synchrotron ...[+]
Tipo: Artículo

References

Keefe, A., & Miller, S. (1995). Are polyphosphates or phosphate esters prebiotic reagents? Journal of Molecular Evolution, 41(6). doi:10.1007/bf00173147

Jones, M. E. (1963). Carbamyl Phosphate: Many forms of life use this molecule to synthesize arginine, uracil, and adenosine triphosphate. Science, 140(3574), 1373-1379. doi:10.1126/science.140.3574.1373

Kantrowitz, E., & Lipscomb, W. (1988). Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science, 241(4866), 669-674. doi:10.1126/science.3041592 [+]
Keefe, A., & Miller, S. (1995). Are polyphosphates or phosphate esters prebiotic reagents? Journal of Molecular Evolution, 41(6). doi:10.1007/bf00173147

Jones, M. E. (1963). Carbamyl Phosphate: Many forms of life use this molecule to synthesize arginine, uracil, and adenosine triphosphate. Science, 140(3574), 1373-1379. doi:10.1126/science.140.3574.1373

Kantrowitz, E., & Lipscomb, W. (1988). Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science, 241(4866), 669-674. doi:10.1126/science.3041592

Xu, Y., Labedan, B., & Glansdorff, N. (2007). Surprising Arginine Biosynthesis: a Reappraisal of the Enzymology and Evolution of the Pathway in Microorganisms. Microbiology and Molecular Biology Reviews, 71(1), 36-47. doi:10.1128/mmbr.00032-06

WARGNIES, B., LAUWERS, N., & STALON, V. (1979). Structure and Properties of the Putrescine Carbamoyltransferase of Streptococcus faecalis. European Journal of Biochemistry, 101(1), 143-152. doi:10.1111/j.1432-1033.1979.tb04226.x

Llacer, J. L., Polo, L. M., Tavarez, S., Alarcon, B., Hilario, R., & Rubio, V. (2006). The Gene Cluster for Agmatine Catabolism of Enterococcus faecalis: Study of Recombinant Putrescine Transcarbamylase and Agmatine Deiminase and a Snapshot of Agmatine Deiminase Catalyzing Its Reaction. Journal of Bacteriology, 189(4), 1254-1265. doi:10.1128/jb.01216-06

Tigier, H., & Grisolia, S. (1965). Induction of carbamyl-P specific oxamate transcarbamylase by parabanic acid in a streptococcus. Biochemical and Biophysical Research Communications, 19(2), 209-214. doi:10.1016/0006-291x(65)90506-1

Vander Wauven, C., Simon, J.-P., Slos, P., & Stalon, V. (1986). Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Archives of Microbiology, 145(4), 386-390. doi:10.1007/bf00470876

Xi, H., Schneider, B. L., & Reitzer, L. (2000). Purine Catabolism in Escherichia coli and Function of Xanthine Dehydrogenase in Purine Salvage. Journal of Bacteriology, 182(19), 5332-5341. doi:10.1128/jb.182.19.5332-5341.2000

Liu, Y., Zeng, L., & Burne, R. A. (2009). AguR Is Required for Induction of the Streptococcus mutans Agmatine Deiminase System by Low pH and Agmatine. Applied and Environmental Microbiology, 75(9), 2629-2637. doi:10.1128/aem.02145-08

Chen, J., Jiang, L., Chen, Q., Zhao, H., Luo, X., Chen, X., & Fang, W. (2009). lmo0038 Is Involved in Acid and Heat Stress Responses and Specific for Listeria monocytogenes Lineages I and II, and Listeria ivanovii. Foodborne Pathogens and Disease, 6(3), 365-376. doi:10.1089/fpd.2008.0207

Villeret, V., Tricot, C., Stalon, V., & Dideberg, O. (1995). Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. Proceedings of the National Academy of Sciences, 92(23), 10762-10766. doi:10.1073/pnas.92.23.10762

De las Rivas, B., Fox, G. C., Angulo, I., Ripoll, M. M., Rodríguez, H., Muñoz, R., & Mancheño, J. M. (2009). Crystal Structure of the Hexameric Catabolic Ornithine Transcarbamylase from Lactobacillus hilgardii: Structural Insights into the Oligomeric Assembly and Metal Binding. Journal of Molecular Biology, 393(2), 425-434. doi:10.1016/j.jmb.2009.08.002

Liu, Y., & Burne, R. A. (2009). Multiple Two-Component Systems of Streptococcus mutans Regulate Agmatine Deiminase Gene Expression and Stress Tolerance. Journal of Bacteriology, 191(23), 7363-7366. doi:10.1128/jb.01054-09

Low, D. E., Keller, N., Barth, A., & Jones, R. N. (2001). Clinical Prevalence, Antimicrobial Susceptibility, and Geographic Resistance Patterns of Enterococci: Results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clinical Infectious Diseases, 32(s2), S133-S145. doi:10.1086/320185

Griswold, A. R., Chen, Y.-Y. M., & Burne, R. A. (2004). Analysis of an Agmatine Deiminase Gene Cluster in Streptococcus mutans UA159. Journal of Bacteriology, 186(6), 1902-1904. doi:10.1128/jb.186.6.1902-1904.2004

Naumoff, D. G., Xu, Y., Glansdorff, N., & Labedan, B. (2004). BMC Genomics, 5(1), 52. doi:10.1186/1471-2164-5-52

Villeret, V., Clantin, B., Tricot, C., Legrain, C., Roovers, M., Stalon, V., … Van Beeumen, J. (1998). The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proceedings of the National Academy of Sciences, 95(6), 2801-2806. doi:10.1073/pnas.95.6.2801

Galkin, A., Kulakova, L., Wu, R., Gong, M., Dunaway-Mariano, D., & Herzberg, O. (2009). X-ray structure and kinetic properties of ornithine transcarbamoylase from the human parasiteGiardia lamblia. Proteins: Structure, Function, and Bioinformatics, 76(4), 1049-1053. doi:10.1002/prot.22469

Aoki, Y., Sunaga, H., & Suzuki, K. T. (1988). A cadmium-binding protein in rat liver identified as ornithine carbamoyltransferase. Biochemical Journal, 250(3), 735-742. doi:10.1042/bj2500735

Shi, D., Morizono, H., Ha, Y., Aoyagi, M., Tuchman, M., & Allewell, N. M. (1998). 1.85-Å Resolution Crystal Structure of Human Ornithine Transcarbamoylase Complexed withN-Phosphonacetyl-l-ornithine. Journal of Biological Chemistry, 273(51), 34247-34254. doi:10.1074/jbc.273.51.34247

Robey, E. A., & Schachman, H. K. (1985). Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Proceedings of the National Academy of Sciences, 82(2), 361-365. doi:10.1073/pnas.82.2.361

Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D Biological Crystallography, 60(12), 2256-2268. doi:10.1107/s0907444904026460

Labedan, B., Boyen, A., Baetens, M., Charlier, D., Chen, P., Cunin, R., … Zhang, Y.-F. (1999). The Evolutionary History of Carbamoyltransferases: A Complex Set of Paralogous Genes Was Already Present in the Last Universal Common Ancestor. Journal of Molecular Evolution, 49(4), 461-473. doi:10.1007/pl00006569

Ha, Y., McCann, M. T., Tuchman, M., & Allewell, N. M. (1997). Substrate-induced conformational change in a trimeric ornithine transcarbamoylase. Proceedings of the National Academy of Sciences, 94(18), 9550-9555. doi:10.1073/pnas.94.18.9550

Rulı́šek, L., & Vondrášek, J. (1998). Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. Journal of Inorganic Biochemistry, 71(3-4), 115-127. doi:10.1016/s0162-0134(98)10042-9

Krissinel, E., & Henrick, K. (2007). Inference of Macromolecular Assemblies from Crystalline State. Journal of Molecular Biology, 372(3), 774-797. doi:10.1016/j.jmb.2007.05.022

Naumoff, D. G. (2004). The difficulty of annotating genes: the case of putrescine carbamoyltransferase. Microbiology, 150(12), 3908-3911. doi:10.1099/mic.0.27640-0

Griswold, A. R., Jameson-Lee, M., & Burne, R. A. (2006). Regulation and Physiologic Significance of the Agmatine Deiminase System of Streptococcus mutans UA159. Journal of Bacteriology, 188(3), 834-841. doi:10.1128/jb.188.3.834-841.2006

Kuo, L. C., Miller, A. W., Lee, S., & Kozuma, C. (1988). Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Biochemistry, 27(24), 8823-8832. doi:10.1021/bi00424a021

Ramón-Maiques, S., Britton, H. G., & Rubio, V. (2002). Molecular Physiology of Phosphoryl Group Transfer from Carbamoyl Phosphate by a Hyperthermophilic Enzyme at Low Temperature†. Biochemistry, 41(12), 3916-3924. doi:10.1021/bi011637d

Legrain, C., Villeret, V., Roovers, M., Gigot, D., Dideberg, O., Pierard, A., & Glansdorff, N. (1997). Biochemical Characterisation of Ornithine Carbamoyltransferase from Pyrococcus Furiosus. European Journal of Biochemistry, 247(3), 1046-1055. doi:10.1111/j.1432-1033.1997.01046.x

Clantin, B., Tricot, C., Lonhienne, T., Stalon, V., & Villeret, V. (2001). Probing the role of oligomerization in the high thermal stability ofPyrococcus furiosusornithine carbamoyltransferase by site-specific mutants. European Journal of Biochemistry, 268(14), 3937-3942. doi:10.1046/j.1432-1327.2001.02302.x

Massant, J., Wouters, J., & Glansdorff, N. (2003). Refined structure ofPyrococcus furiosusornithine carbamoyltransferase at 1.87 A. Acta Crystallographica Section D Biological Crystallography, 59(12), 2140-2149. doi:10.1107/s0907444903019231

Zhang, P., Martin, P. D., Purcarea, C., Vaishnav, A., Brunzelle, J. S., Fernando, R., … Edwards, B. F. P. (2009). Dihydroorotase from the HyperthermophileAquifiex aeolicusIs Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis†‡. Biochemistry, 48(4), 766-778. doi:10.1021/bi801831r

Evans, D. R., Bein, K., Guy, H. I., Liu, X., Molina, J. A., & Zimmermann, B. H. (1993). CAD gene sequence and the domain structure of the mammalian multifunctional protein CAD. Biochemical Society Transactions, 21(1), 186-191. doi:10.1042/bst0210186

Kotaka, M., Ren, J., Lockyer, M., Hawkins, A. R., & Stammers, D. K. (2006). Structures of R- and T-stateEscherichia coliAspartokinase III. Journal of Biological Chemistry, 281(42), 31544-31552. doi:10.1074/jbc.m605886200

Gileadi, O., Burgess-Brown, N. A., Colebrook, S. M., Berridge, G., Savitsky, P., Smee, C. E. A., … Pantic, N. H. (2008). High Throughput Production of Recombinant Human Proteins for Crystallography. Structural Proteomics, 221-246. doi:10.1007/978-1-60327-058-8_14

Goloubinoff, P., Gatenby, A. A., & Lorimer, G. H. (1989). GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 337(6202), 44-47. doi:10.1038/337044a0

Otwinowski, Z., & Minor, W. (1997). [20] Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography Part A, 307-326. doi:10.1016/s0076-6879(97)76066-x

Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallographica Section D Biological Crystallography, 50(5), 760-763. doi:10.1107/s0907444994003112

Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., … Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological Crystallography, 67(4), 355-367. doi:10.1107/s0907444911001314

Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development ofCoot. Acta Crystallographica Section D Biological Crystallography, 66(4), 486-501. doi:10.1107/s0907444910007493

Brünger, A. T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, 355(6359), 472-475. doi:10.1038/355472a0

Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283-291. doi:10.1107/s0021889892009944

Winn, M. D., Murshudov, G. N., & Papiz, M. Z. (2003). Macromolecular TLS Refinement in REFMAC at Moderate Resolutions. Macromolecular Crystallography, Part D, 300-321. doi:10.1016/s0076-6879(03)74014-2

Painter, J., & Merritt, E. A. (2006). TLSMDweb server for the generation of multi-group TLS models. Journal of Applied Crystallography, 39(1), 109-111. doi:10.1107/s0021889805038987

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0

Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem