dc.contributor.author |
Polo, Luis Mariano
|
es_ES |
dc.contributor.author |
Gil Ortíz, Fernando
|
es_ES |
dc.contributor.author |
Cantin Sanz, Angel
|
es_ES |
dc.contributor.author |
Rubio, Vicente
|
es_ES |
dc.date.accessioned |
2015-06-09T07:58:34Z |
|
dc.date.available |
2015-06-09T07:58:34Z |
|
dc.date.issued |
2012-02-20 |
|
dc.identifier.issn |
1932-6203 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/51405 |
|
dc.description.abstract |
Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate
transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about putrescine
transcarbamylase (PTC), the enzyme that generates CP for ATP production in the fermentative catabolism of agmatine. We
demonstrate that PTC (from Enterococcus faecalis), in addition to using putrescine, can utilize L-ornithine as a poor
substrate. Crystal structures at 2.5 A˚ and 2.0 A˚ resolutions of PTC bound to its respective bisubstrate analog inhibitors for
putrescine and ornithine use, N-(phosphonoacetyl)-putrescine and d-N-(phosphonoacetyl)-L-ornithine, shed light on PTC
preference for putrescine. Except for a highly prominent C-terminal helix that projects away and embraces an adjacent
subunit, PTC closely resembles OTCs, suggesting recent divergence of the two enzymes. Since differences between the
respective 230 and SMG loops of PTC and OTC appeared to account for the differential preference of these enzymes for
putrescine and ornithine, we engineered the 230-loop of PTC to make it to resemble the SMG loop of OTCs, increasing the
activity with ornithine and greatly decreasing the activity with putrescine. We also examined the role of the C-terminal helix
that appears a constant and exclusive PTC trait. The enzyme lacking this helix remained active but the PTC trimer stability
appeared decreased, since some of the enzyme eluted as monomers from a gel filtration column. In addition, truncated PTC
tended to aggregate to hexamers, as shown both chromatographically and by X-ray crystallography. Therefore, the extra Cterminal
helix plays a dual role: it stabilizes the PTC trimer and, by shielding helix 1 of an adjacent subunit, it prevents the
supratrimeric oligomerizations of obscure significance observed with some OTCs. Guided by the structural data we identify
signature traits that permit easy and unambiguous annotation of PTC sequences. |
es_ES |
dc.description.sponsorship |
This work was supported by grants BFU2008-05021 of the Spanish Ministry for Science and Prometeo/2009/051 of the Valencian Government. The European Union and the European Molecular Biology Laboratory funded synchrotron visits. LMP was supported by a Consejo Superior de Investigaciones Cientificas-Banco de Santander fellowship and FGO by a JAE-DOC contract of the Consejo Superior de Investigaciones Cientificas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Public Library of Science |
es_ES |
dc.relation.ispartof |
PLoS ONE |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.title |
New Insight into the Transcarbamylase Family: TheStructure of Putrescine Transcarbamylase, a Key Catalystfor Fermentative Utilization of Agmatine |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1371/journal.pone.0031528 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//BFU2008-05021/ES/COMPLEJOS MACROMOLECULARES, PLURIEMPLEO E IMPLICACIONES EN ENFERMEDADES RARAS DE LOS MIEMBROS DE LA FAMILIA AMINOACIDO QUINASA/ |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F051/ES/Genes, proteínas y rutas de señalización en enfermedades raras (Biomeder)/ |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química |
es_ES |
dc.description.bibliographicCitation |
Polo, LM.; Gil Ortíz, F.; Cantin Sanz, A.; Rubio, V. (2012). New Insight into the Transcarbamylase Family: TheStructure of Putrescine Transcarbamylase, a Key Catalystfor Fermentative Utilization of Agmatine. PLoS ONE. 7(2):31528-31543. https://doi.org/10.1371/journal.pone.0031528 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1371/journal.pone.0031528 |
es_ES |
dc.description.upvformatpinicio |
31528 |
es_ES |
dc.description.upvformatpfin |
31543 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
7 |
es_ES |
dc.description.issue |
2 |
es_ES |
dc.relation.senia |
239823 |
|
dc.identifier.pmid |
22363663 |
en_EN |
dc.identifier.pmcid |
PMC3282769 |
en_EN |
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
|
dc.contributor.funder |
Generalitat Valenciana |
|
dc.contributor.funder |
Banco Santander |
|
dc.contributor.funder |
Consejo Superior de Investigaciones Científicas |
|
dc.contributor.funder |
European Commission |
|
dc.description.references |
Keefe, A., & Miller, S. (1995). Are polyphosphates or phosphate esters prebiotic reagents? Journal of Molecular Evolution, 41(6). doi:10.1007/bf00173147 |
es_ES |
dc.description.references |
Jones, M. E. (1963). Carbamyl Phosphate: Many forms of life use this molecule to synthesize arginine, uracil, and adenosine triphosphate. Science, 140(3574), 1373-1379. doi:10.1126/science.140.3574.1373 |
es_ES |
dc.description.references |
Kantrowitz, E., & Lipscomb, W. (1988). Escherichia coli aspartate transcarbamylase: the relation between structure and function. Science, 241(4866), 669-674. doi:10.1126/science.3041592 |
es_ES |
dc.description.references |
Xu, Y., Labedan, B., & Glansdorff, N. (2007). Surprising Arginine Biosynthesis: a Reappraisal of the Enzymology and Evolution of the Pathway in Microorganisms. Microbiology and Molecular Biology Reviews, 71(1), 36-47. doi:10.1128/mmbr.00032-06 |
es_ES |
dc.description.references |
WARGNIES, B., LAUWERS, N., & STALON, V. (1979). Structure and Properties of the Putrescine Carbamoyltransferase of Streptococcus faecalis. European Journal of Biochemistry, 101(1), 143-152. doi:10.1111/j.1432-1033.1979.tb04226.x |
es_ES |
dc.description.references |
Llacer, J. L., Polo, L. M., Tavarez, S., Alarcon, B., Hilario, R., & Rubio, V. (2006). The Gene Cluster for Agmatine Catabolism of Enterococcus faecalis: Study of Recombinant Putrescine Transcarbamylase and Agmatine Deiminase and a Snapshot of Agmatine Deiminase Catalyzing Its Reaction. Journal of Bacteriology, 189(4), 1254-1265. doi:10.1128/jb.01216-06 |
es_ES |
dc.description.references |
Tigier, H., & Grisolia, S. (1965). Induction of carbamyl-P specific oxamate transcarbamylase by parabanic acid in a streptococcus. Biochemical and Biophysical Research Communications, 19(2), 209-214. doi:10.1016/0006-291x(65)90506-1 |
es_ES |
dc.description.references |
Vander Wauven, C., Simon, J.-P., Slos, P., & Stalon, V. (1986). Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Archives of Microbiology, 145(4), 386-390. doi:10.1007/bf00470876 |
es_ES |
dc.description.references |
Xi, H., Schneider, B. L., & Reitzer, L. (2000). Purine Catabolism in Escherichia coli and Function of Xanthine Dehydrogenase in Purine Salvage. Journal of Bacteriology, 182(19), 5332-5341. doi:10.1128/jb.182.19.5332-5341.2000 |
es_ES |
dc.description.references |
Liu, Y., Zeng, L., & Burne, R. A. (2009). AguR Is Required for Induction of the Streptococcus mutans Agmatine Deiminase System by Low pH and Agmatine. Applied and Environmental Microbiology, 75(9), 2629-2637. doi:10.1128/aem.02145-08 |
es_ES |
dc.description.references |
Chen, J., Jiang, L., Chen, Q., Zhao, H., Luo, X., Chen, X., & Fang, W. (2009). lmo0038 Is Involved in Acid and Heat Stress Responses and Specific for Listeria monocytogenes Lineages I and II, and Listeria ivanovii. Foodborne Pathogens and Disease, 6(3), 365-376. doi:10.1089/fpd.2008.0207 |
es_ES |
dc.description.references |
Villeret, V., Tricot, C., Stalon, V., & Dideberg, O. (1995). Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family. Proceedings of the National Academy of Sciences, 92(23), 10762-10766. doi:10.1073/pnas.92.23.10762 |
es_ES |
dc.description.references |
De las Rivas, B., Fox, G. C., Angulo, I., Ripoll, M. M., Rodríguez, H., Muñoz, R., & Mancheño, J. M. (2009). Crystal Structure of the Hexameric Catabolic Ornithine Transcarbamylase from Lactobacillus hilgardii: Structural Insights into the Oligomeric Assembly and Metal Binding. Journal of Molecular Biology, 393(2), 425-434. doi:10.1016/j.jmb.2009.08.002 |
es_ES |
dc.description.references |
Liu, Y., & Burne, R. A. (2009). Multiple Two-Component Systems of Streptococcus mutans Regulate Agmatine Deiminase Gene Expression and Stress Tolerance. Journal of Bacteriology, 191(23), 7363-7366. doi:10.1128/jb.01054-09 |
es_ES |
dc.description.references |
Low, D. E., Keller, N., Barth, A., & Jones, R. N. (2001). Clinical Prevalence, Antimicrobial Susceptibility, and Geographic Resistance Patterns of Enterococci: Results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clinical Infectious Diseases, 32(s2), S133-S145. doi:10.1086/320185 |
es_ES |
dc.description.references |
Griswold, A. R., Chen, Y.-Y. M., & Burne, R. A. (2004). Analysis of an Agmatine Deiminase Gene Cluster in Streptococcus mutans UA159. Journal of Bacteriology, 186(6), 1902-1904. doi:10.1128/jb.186.6.1902-1904.2004 |
es_ES |
dc.description.references |
Naumoff, D. G., Xu, Y., Glansdorff, N., & Labedan, B. (2004). BMC Genomics, 5(1), 52. doi:10.1186/1471-2164-5-52 |
es_ES |
dc.description.references |
Villeret, V., Clantin, B., Tricot, C., Legrain, C., Roovers, M., Stalon, V., … Van Beeumen, J. (1998). The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proceedings of the National Academy of Sciences, 95(6), 2801-2806. doi:10.1073/pnas.95.6.2801 |
es_ES |
dc.description.references |
Galkin, A., Kulakova, L., Wu, R., Gong, M., Dunaway-Mariano, D., & Herzberg, O. (2009). X-ray structure and kinetic properties of ornithine transcarbamoylase from the human parasiteGiardia lamblia. Proteins: Structure, Function, and Bioinformatics, 76(4), 1049-1053. doi:10.1002/prot.22469 |
es_ES |
dc.description.references |
Aoki, Y., Sunaga, H., & Suzuki, K. T. (1988). A cadmium-binding protein in rat liver identified as ornithine carbamoyltransferase. Biochemical Journal, 250(3), 735-742. doi:10.1042/bj2500735 |
es_ES |
dc.description.references |
Shi, D., Morizono, H., Ha, Y., Aoyagi, M., Tuchman, M., & Allewell, N. M. (1998). 1.85-Å Resolution Crystal Structure of Human Ornithine Transcarbamoylase Complexed withN-Phosphonacetyl-l-ornithine. Journal of Biological Chemistry, 273(51), 34247-34254. doi:10.1074/jbc.273.51.34247 |
es_ES |
dc.description.references |
Robey, E. A., & Schachman, H. K. (1985). Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Proceedings of the National Academy of Sciences, 82(2), 361-365. doi:10.1073/pnas.82.2.361 |
es_ES |
dc.description.references |
Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D Biological Crystallography, 60(12), 2256-2268. doi:10.1107/s0907444904026460 |
es_ES |
dc.description.references |
Labedan, B., Boyen, A., Baetens, M., Charlier, D., Chen, P., Cunin, R., … Zhang, Y.-F. (1999). The Evolutionary History of Carbamoyltransferases: A Complex Set of Paralogous Genes Was Already Present in the Last Universal Common Ancestor. Journal of Molecular Evolution, 49(4), 461-473. doi:10.1007/pl00006569 |
es_ES |
dc.description.references |
Ha, Y., McCann, M. T., Tuchman, M., & Allewell, N. M. (1997). Substrate-induced conformational change in a trimeric ornithine transcarbamoylase. Proceedings of the National Academy of Sciences, 94(18), 9550-9555. doi:10.1073/pnas.94.18.9550 |
es_ES |
dc.description.references |
Rulı́šek, L., & Vondrášek, J. (1998). Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. Journal of Inorganic Biochemistry, 71(3-4), 115-127. doi:10.1016/s0162-0134(98)10042-9 |
es_ES |
dc.description.references |
Krissinel, E., & Henrick, K. (2007). Inference of Macromolecular Assemblies from Crystalline State. Journal of Molecular Biology, 372(3), 774-797. doi:10.1016/j.jmb.2007.05.022 |
es_ES |
dc.description.references |
Naumoff, D. G. (2004). The difficulty of annotating genes: the case of putrescine carbamoyltransferase. Microbiology, 150(12), 3908-3911. doi:10.1099/mic.0.27640-0 |
es_ES |
dc.description.references |
Griswold, A. R., Jameson-Lee, M., & Burne, R. A. (2006). Regulation and Physiologic Significance of the Agmatine Deiminase System of Streptococcus mutans UA159. Journal of Bacteriology, 188(3), 834-841. doi:10.1128/jb.188.3.834-841.2006 |
es_ES |
dc.description.references |
Kuo, L. C., Miller, A. W., Lee, S., & Kozuma, C. (1988). Site-directed mutagenesis of Escherichia coli ornithine transcarbamoylase: role of arginine-57 in substrate binding and catalysis. Biochemistry, 27(24), 8823-8832. doi:10.1021/bi00424a021 |
es_ES |
dc.description.references |
Ramón-Maiques, S., Britton, H. G., & Rubio, V. (2002). Molecular Physiology of Phosphoryl Group Transfer from Carbamoyl Phosphate by a Hyperthermophilic Enzyme at Low Temperature†. Biochemistry, 41(12), 3916-3924. doi:10.1021/bi011637d |
es_ES |
dc.description.references |
Legrain, C., Villeret, V., Roovers, M., Gigot, D., Dideberg, O., Pierard, A., & Glansdorff, N. (1997). Biochemical Characterisation of Ornithine Carbamoyltransferase from Pyrococcus Furiosus. European Journal of Biochemistry, 247(3), 1046-1055. doi:10.1111/j.1432-1033.1997.01046.x |
es_ES |
dc.description.references |
Clantin, B., Tricot, C., Lonhienne, T., Stalon, V., & Villeret, V. (2001). Probing the role of oligomerization in the high thermal stability ofPyrococcus furiosusornithine carbamoyltransferase by site-specific mutants. European Journal of Biochemistry, 268(14), 3937-3942. doi:10.1046/j.1432-1327.2001.02302.x |
es_ES |
dc.description.references |
Massant, J., Wouters, J., & Glansdorff, N. (2003). Refined structure ofPyrococcus furiosusornithine carbamoyltransferase at 1.87 A. Acta Crystallographica Section D Biological Crystallography, 59(12), 2140-2149. doi:10.1107/s0907444903019231 |
es_ES |
dc.description.references |
Zhang, P., Martin, P. D., Purcarea, C., Vaishnav, A., Brunzelle, J. S., Fernando, R., … Edwards, B. F. P. (2009). Dihydroorotase from the HyperthermophileAquifiex aeolicusIs Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis†‡. Biochemistry, 48(4), 766-778. doi:10.1021/bi801831r |
es_ES |
dc.description.references |
Evans, D. R., Bein, K., Guy, H. I., Liu, X., Molina, J. A., & Zimmermann, B. H. (1993). CAD gene sequence and the domain structure of the mammalian multifunctional protein CAD. Biochemical Society Transactions, 21(1), 186-191. doi:10.1042/bst0210186 |
es_ES |
dc.description.references |
Kotaka, M., Ren, J., Lockyer, M., Hawkins, A. R., & Stammers, D. K. (2006). Structures of R- and T-stateEscherichia coliAspartokinase III. Journal of Biological Chemistry, 281(42), 31544-31552. doi:10.1074/jbc.m605886200 |
es_ES |
dc.description.references |
Gileadi, O., Burgess-Brown, N. A., Colebrook, S. M., Berridge, G., Savitsky, P., Smee, C. E. A., … Pantic, N. H. (2008). High Throughput Production of Recombinant Human Proteins for Crystallography. Structural Proteomics, 221-246. doi:10.1007/978-1-60327-058-8_14 |
es_ES |
dc.description.references |
Goloubinoff, P., Gatenby, A. A., & Lorimer, G. H. (1989). GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature, 337(6202), 44-47. doi:10.1038/337044a0 |
es_ES |
dc.description.references |
Otwinowski, Z., & Minor, W. (1997). [20] Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography Part A, 307-326. doi:10.1016/s0076-6879(97)76066-x |
es_ES |
dc.description.references |
Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallographica Section D Biological Crystallography, 50(5), 760-763. doi:10.1107/s0907444994003112 |
es_ES |
dc.description.references |
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., … Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D Biological Crystallography, 67(4), 355-367. doi:10.1107/s0907444911001314 |
es_ES |
dc.description.references |
Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development ofCoot. Acta Crystallographica Section D Biological Crystallography, 66(4), 486-501. doi:10.1107/s0907444910007493 |
es_ES |
dc.description.references |
Brünger, A. T. (1992). Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, 355(6359), 472-475. doi:10.1038/355472a0 |
es_ES |
dc.description.references |
Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283-291. doi:10.1107/s0021889892009944 |
es_ES |
dc.description.references |
Winn, M. D., Murshudov, G. N., & Papiz, M. Z. (2003). Macromolecular TLS Refinement in REFMAC at Moderate Resolutions. Macromolecular Crystallography, Part D, 300-321. doi:10.1016/s0076-6879(03)74014-2 |
es_ES |
dc.description.references |
Painter, J., & Merritt, E. A. (2006). TLSMDweb server for the generation of multi-group TLS models. Journal of Applied Crystallography, 39(1), 109-111. doi:10.1107/s0021889805038987 |
es_ES |
dc.description.references |
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3 |
es_ES |
dc.description.references |
LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0 |
es_ES |
dc.description.references |
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673 |
es_ES |