- -

Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carranza Castillo, Oscar es_ES
dc.contributor.author Garcerá Sanfeliú, Gabriel es_ES
dc.contributor.author Figueres Amorós, Emilio es_ES
dc.contributor.author González Morales, Luis Gerardo es_ES
dc.date.accessioned 2015-06-19T10:48:49Z
dc.date.available 2015-06-19T10:48:49Z
dc.date.issued 2014-06
dc.identifier.issn 1095-4244
dc.identifier.uri http://hdl.handle.net/10251/51953
dc.description.abstract This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing scheme based on a diode rectifier and a boost DC-DC converter working in discontinuous conduction mode is proposed. The proposed generator control structure is based on three cascaded control loops that regulate the generator current, the turbine speed and the amount of power that is extracted from the wind, respectively, following the turbine aerodynamics and the actual wind speed. The analysis and design of both the current and the speed loops have been carried out taking into consideration the electrical and mechanical characteristics of the WECS, as well as the turbine aerodynamics. The power loop is not a linear one, but a maximum power point tracking algorithm, based on the Perturb and Observe technique, from which is obtained the reference signal for the speed loop. Finally, to avoid the need of mechanical sensors, a linear Kalman Filter has been chosen to estimate the generator speed. Simulation and experimental results on a 2-kW prototype are shown to validate the concept. © 2013 John Wiley & Sons, Ltd. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Wind Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Linear Kalman filter es_ES
dc.subject MPPT es_ES
dc.subject Permanent magnet synchronous generator es_ES
dc.subject Sensorless es_ES
dc.subject Wind energy conversion system es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Low power wind energy conversion system based on variable speed permanent magnet synchronous generators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/we.1598
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de Sistemas Electrónicos Industriales es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Carranza Castillo, O.; Garcerá Sanfeliú, G.; Figueres Amorós, E.; González Morales, LG. (2014). Low power wind energy conversion system based on variable speed permanent magnet synchronous generators. Wind Energy. 17(6):811-827. doi:10.1002/we.1598 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/we.1598 es_ES
dc.description.upvformatpinicio 811 es_ES
dc.description.upvformatpfin 827 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 255064
dc.identifier.eissn 1099-1824
dc.description.references Ackermann, T. (Ed.). (2005). Wind Power in Power Systems. doi:10.1002/0470012684 es_ES
dc.description.references Muyeen, S. M., Shishido, S., Ali, M. H., Takahashi, R., Murata, T., & Tamura, J. (2008). Application of energy capacitor system to wind power generation. Wind Energy, 11(4), 335-350. doi:10.1002/we.265 es_ES
dc.description.references Ladenburg, J. (2009). Stated public preferences for on-land and offshore wind power generation-a review. Wind Energy, 12(2), 171-181. doi:10.1002/we.308 es_ES
dc.description.references Maeda, T., & Kamada, Y. (2009). A review of wind energy activities in Japan. Wind Energy, 12(7), 621-639. doi:10.1002/we.313 es_ES
dc.description.references Baroudi, J. A., Dinavahi, V., & Knight, A. M. (2007). A review of power converter topologies for wind generators. Renewable Energy, 32(14), 2369-2385. doi:10.1016/j.renene.2006.12.002 es_ES
dc.description.references Di Gerlando, A., Foglia, G., Iacchetti, M. F., & Perini, R. (2012). Analysis and Test of Diode Rectifier Solutions in Grid-Connected Wind Energy Conversion Systems Employing Modular Permanent-Magnet Synchronous Generators. IEEE Transactions on Industrial Electronics, 59(5), 2135-2146. doi:10.1109/tie.2011.2157295 es_ES
dc.description.references Yungtaek Jang, & Jovanovic, M. M. (2000). A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers. IEEE Transactions on Power Electronics, 15(2), 268-277. doi:10.1109/63.838099 es_ES
dc.description.references Athab, H. S., Lu, D. D.-C., & Ramar, K. (2012). A Single-Switch AC/DC Flyback Converter Using a CCM/DCM Quasi-Active Power Factor Correction Front-End. IEEE Transactions on Industrial Electronics, 59(3), 1517-1526. doi:10.1109/tie.2011.2158771 es_ES
dc.description.references Barbosa, P., Canales, F., Crebier, J.-C., & Lee, F. C. (2001). Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation. IEEE Transactions on Power Electronics, 16(5), 724-734. doi:10.1109/63.949505 es_ES
dc.description.references Yao, K., Ruan, X., Mao, X., & Ye, Z. (2011). Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter. IEEE Transactions on Industrial Electronics, 58(5), 1856-1865. doi:10.1109/tie.2010.2052538 es_ES
dc.description.references Andriollo, M., De Bortoli, M., Martinelli, G., Morini, A., & Tortella, A. (2009). Control strategy of a wind turbine drive by an integrated model. Wind Energy, 12(1), 33-49. doi:10.1002/we.281 es_ES
dc.description.references Hansen, A. D., & Michalke, G. (2008). Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine. Wind Energy, 11(5), 537-554. doi:10.1002/we.278 es_ES
dc.description.references Salvatore, N., Caponio, A., Neri, F., Stasi, S., & Cascella, G. L. (2010). Optimization of Delayed-State Kalman-Filter-Based Algorithm via Differential Evolution for Sensorless Control of Induction Motors. IEEE Transactions on Industrial Electronics, 57(1), 385-394. doi:10.1109/tie.2009.2033489 es_ES
dc.description.references Kazmi, S. M. R., Goto, H., Guo, H.-J., & Ichinokura, O. (2011). A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems. IEEE Transactions on Industrial Electronics, 58(1), 29-36. doi:10.1109/tie.2010.2044732 es_ES
dc.description.references Pucci, M., & Cirrincione, M. (2011). Neural MPPT Control of Wind Generators With Induction Machines Without Speed Sensors. IEEE Transactions on Industrial Electronics, 58(1), 37-47. doi:10.1109/tie.2010.2043043 es_ES
dc.description.references Ming Y Li G Ming Z Chengyong Z Modeling of the wind turbine with a permanent magnet synchronous generator for integration IEEE Power Engineering Society General Meeting, 2007 2007 1 6 es_ES
dc.description.references Carranza O Figueres E Garcera G Gonzalez LG Gonzalez-Espin F Peak current mode control of a boost rectifier with low distortion of the input current for wind power systems based on permanent magnet synchronous generators 13th European Conference on Power Electronics and Applications, EPE ’09 2009 1 10 es_ES
dc.description.references Eltamaly, A. M. (2007). Harmonics reduction of three-phase boost rectifier by modulating duty ratio. Electric Power Systems Research, 77(10), 1425-1431. doi:10.1016/j.epsr.2006.10.012 es_ES
dc.description.references Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 490-496. doi:10.1109/7.106126 es_ES
dc.description.references Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813 es_ES
dc.description.references Carranza O Figueres E Garcera G Trujillo CL Velasco D Comparison of speed estimators applied to wind generation systems with noisy measurement signals ISIE 2010 IEEE International Symposium on Industrial 2010 3317 3322 es_ES
dc.description.references Yaoqin J Zhongqing Y Binggang C A new maximum power point tracking control scheme for wind generation International Conference on Power System Technology, PowerCon 2002 IEEE-PES/CSEE 2002 144 148 es_ES
dc.description.references PSIM 7.0 User's Guide (2006), Powersim Inc. 2006 es_ES
dc.description.references Carranza, O., Garcerá, G., Figueres, E., & González, L. G. (2010). Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators. Applied Energy, 87(8), 2728-2736. doi:10.1016/j.apenergy.2010.02.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem