- -

Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low power wind energy conversion system based on variable speed permanent magnet synchronous generators

Mostrar el registro completo del ítem

Carranza Castillo, O.; Garcerá Sanfeliú, G.; Figueres Amorós, E.; González Morales, LG. (2014). Low power wind energy conversion system based on variable speed permanent magnet synchronous generators. Wind Energy. 17(6):811-827. doi:10.1002/we.1598

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/51953

Ficheros en el ítem

Metadatos del ítem

Título: Low power wind energy conversion system based on variable speed permanent magnet synchronous generators
Autor: Carranza Castillo, Oscar Garcerá Sanfeliú, Gabriel Figueres Amorós, Emilio González Morales, Luis Gerardo
Entidad UPV: Universitat Politècnica de València. Grupo de Sistemas Electrónicos Industriales
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
This paper presents a low power wind energy conversion system (WECS) based on a permanent magnet synchronous generator and a high power factor (PF) rectifier. To achieve a high PF at the generator side, a power processing ...[+]
Palabras clave: Linear Kalman filter , MPPT , Permanent magnet synchronous generator , Sensorless , Wind energy conversion system
Derechos de uso: Reserva de todos los derechos
Fuente:
Wind Energy. (issn: 1095-4244 ) (eissn: 1099-1824 )
DOI: 10.1002/we.1598
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/we.1598
Tipo: Artículo

References

Ackermann, T. (Ed.). (2005). Wind Power in Power Systems. doi:10.1002/0470012684

Muyeen, S. M., Shishido, S., Ali, M. H., Takahashi, R., Murata, T., & Tamura, J. (2008). Application of energy capacitor system to wind power generation. Wind Energy, 11(4), 335-350. doi:10.1002/we.265

Ladenburg, J. (2009). Stated public preferences for on-land and offshore wind power generation-a review. Wind Energy, 12(2), 171-181. doi:10.1002/we.308 [+]
Ackermann, T. (Ed.). (2005). Wind Power in Power Systems. doi:10.1002/0470012684

Muyeen, S. M., Shishido, S., Ali, M. H., Takahashi, R., Murata, T., & Tamura, J. (2008). Application of energy capacitor system to wind power generation. Wind Energy, 11(4), 335-350. doi:10.1002/we.265

Ladenburg, J. (2009). Stated public preferences for on-land and offshore wind power generation-a review. Wind Energy, 12(2), 171-181. doi:10.1002/we.308

Maeda, T., & Kamada, Y. (2009). A review of wind energy activities in Japan. Wind Energy, 12(7), 621-639. doi:10.1002/we.313

Baroudi, J. A., Dinavahi, V., & Knight, A. M. (2007). A review of power converter topologies for wind generators. Renewable Energy, 32(14), 2369-2385. doi:10.1016/j.renene.2006.12.002

Di Gerlando, A., Foglia, G., Iacchetti, M. F., & Perini, R. (2012). Analysis and Test of Diode Rectifier Solutions in Grid-Connected Wind Energy Conversion Systems Employing Modular Permanent-Magnet Synchronous Generators. IEEE Transactions on Industrial Electronics, 59(5), 2135-2146. doi:10.1109/tie.2011.2157295

Yungtaek Jang, & Jovanovic, M. M. (2000). A new input-voltage feedforward harmonic-injection technique with nonlinear gain control for single-switch, three-phase, DCM boost rectifiers. IEEE Transactions on Power Electronics, 15(2), 268-277. doi:10.1109/63.838099

Athab, H. S., Lu, D. D.-C., & Ramar, K. (2012). A Single-Switch AC/DC Flyback Converter Using a CCM/DCM Quasi-Active Power Factor Correction Front-End. IEEE Transactions on Industrial Electronics, 59(3), 1517-1526. doi:10.1109/tie.2011.2158771

Barbosa, P., Canales, F., Crebier, J.-C., & Lee, F. C. (2001). Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation. IEEE Transactions on Power Electronics, 16(5), 724-734. doi:10.1109/63.949505

Yao, K., Ruan, X., Mao, X., & Ye, Z. (2011). Variable-Duty-Cycle Control to Achieve High Input Power Factor for DCM Boost PFC Converter. IEEE Transactions on Industrial Electronics, 58(5), 1856-1865. doi:10.1109/tie.2010.2052538

Andriollo, M., De Bortoli, M., Martinelli, G., Morini, A., & Tortella, A. (2009). Control strategy of a wind turbine drive by an integrated model. Wind Energy, 12(1), 33-49. doi:10.1002/we.281

Hansen, A. D., & Michalke, G. (2008). Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine. Wind Energy, 11(5), 537-554. doi:10.1002/we.278

Salvatore, N., Caponio, A., Neri, F., Stasi, S., & Cascella, G. L. (2010). Optimization of Delayed-State Kalman-Filter-Based Algorithm via Differential Evolution for Sensorless Control of Induction Motors. IEEE Transactions on Industrial Electronics, 57(1), 385-394. doi:10.1109/tie.2009.2033489

Kazmi, S. M. R., Goto, H., Guo, H.-J., & Ichinokura, O. (2011). A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems. IEEE Transactions on Industrial Electronics, 58(1), 29-36. doi:10.1109/tie.2010.2044732

Pucci, M., & Cirrincione, M. (2011). Neural MPPT Control of Wind Generators With Induction Machines Without Speed Sensors. IEEE Transactions on Industrial Electronics, 58(1), 37-47. doi:10.1109/tie.2010.2043043

Ming Y Li G Ming Z Chengyong Z Modeling of the wind turbine with a permanent magnet synchronous generator for integration IEEE Power Engineering Society General Meeting, 2007 2007 1 6

Carranza O Figueres E Garcera G Gonzalez LG Gonzalez-Espin F Peak current mode control of a boost rectifier with low distortion of the input current for wind power systems based on permanent magnet synchronous generators 13th European Conference on Power Electronics and Applications, EPE ’09 2009 1 10

Eltamaly, A. M. (2007). Harmonics reduction of three-phase boost rectifier by modulating duty ratio. Electric Power Systems Research, 77(10), 1425-1431. doi:10.1016/j.epsr.2006.10.012

Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 490-496. doi:10.1109/7.106126

Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813

Carranza O Figueres E Garcera G Trujillo CL Velasco D Comparison of speed estimators applied to wind generation systems with noisy measurement signals ISIE 2010 IEEE International Symposium on Industrial 2010 3317 3322

Yaoqin J Zhongqing Y Binggang C A new maximum power point tracking control scheme for wind generation International Conference on Power System Technology, PowerCon 2002 IEEE-PES/CSEE 2002 144 148

PSIM 7.0 User's Guide (2006), Powersim Inc. 2006

Carranza, O., Garcerá, G., Figueres, E., & González, L. G. (2010). Peak current mode control of three-phase boost rectifiers in discontinuous conduction mode for small wind power generators. Applied Energy, 87(8), 2728-2736. doi:10.1016/j.apenergy.2010.02.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem