- -

Comparative study of entropy sensitivity to missing biosignal data

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparative study of entropy sensitivity to missing biosignal data

Show full item record

Cirugeda Roldan, EM.; Cuesta Frau, D.; Miró Martínez, P.; Oltra Crespo, S. (2014). Comparative study of entropy sensitivity to missing biosignal data. Entropy. 16(11):5901-5918. doi:10.3390/e16115901

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/52111

Files in this item

Item Metadata

Title: Comparative study of entropy sensitivity to missing biosignal data
Author: Cirugeda Roldán, Eva María Cuesta Frau, David Miró Martínez, Pau Oltra Crespo, Sandra
UPV Unit: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica
Issued date:
Abstract:
Entropy estimation metrics have become a widely used method to identify subtle changes or hidden features in biomedical records. These methods have been more effective than conventional linear techniques in a number of ...[+]
Subjects: Approximate entropy , Sample entropy , Fuzzy entropy , Detrended fluctuation analysis , Biosignal classification , Data loss
Copyrigths: Reserva de todos los derechos
Source:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e16115901
Publisher:
MDPI
Publisher version: http://dx.doi.org/10.3390/e16115901
Project ID:
info:eu-repo/grantAgreement/MICINN//TEC2009-14222/ES/Interpretacion Y Caracterizacion De Metodos De Analisis De Complejidad En El Contexto Del Procesado Biomedico De La Señal/ /
Thanks:
This work has been supported by the Spanish Ministry of Science and Innovation, research project TEC2009-14222.
Type: Artículo

References

Garrett, D., Peterson, D. A., Anderson, C. W., & Thaut, M. H. (2003). Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 141-144. doi:10.1109/tnsre.2003.814441

Alcaraz, R. (2013). Journal of Medical and Biological Engineering, 33(3), 239. doi:10.5405/jmbe.1401

Muller, K., Anderson, C. W., & Birch, G. E. (2003). Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 165-169. doi:10.1109/tnsre.2003.814484 [+]
Garrett, D., Peterson, D. A., Anderson, C. W., & Thaut, M. H. (2003). Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 141-144. doi:10.1109/tnsre.2003.814441

Alcaraz, R. (2013). Journal of Medical and Biological Engineering, 33(3), 239. doi:10.5405/jmbe.1401

Muller, K., Anderson, C. W., & Birch, G. E. (2003). Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 165-169. doi:10.1109/tnsre.2003.814484

Gao, J., Hu, J., & Tung, W. (2011). Entropy measures for biological signal analyses. Nonlinear Dynamics, 68(3), 431-444. doi:10.1007/s11071-011-0281-2

Peng, C. ‐K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82-87. doi:10.1063/1.166141

Alcaraz, R., & Rieta, J. J. (2010). A novel application of sample entropy to the electrocardiogram of atrial fibrillation. Nonlinear Analysis: Real World Applications, 11(2), 1026-1035. doi:10.1016/j.nonrwa.2009.01.047

Lake, D. E., Richman, J. S., Griffin, M. P., & Moorman, J. R. (2002). Sample entropy analysis of neonatal heart rate variability. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(3), R789-R797. doi:10.1152/ajpregu.00069.2002

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039

Pincus, S. M., Gladstone, I. M., & Ehrenkranz, R. A. (1991). A regularity statistic for medical data analysis. Journal of Clinical Monitoring, 7(4), 335-345. doi:10.1007/bf01619355

Abasolo, D., Hornero, R., Escudero, J., & Espino, P. (2008). A Study on the Possible Usefulness of Detrended Fluctuation Analysis of the Electroencephalogram Background Activity in Alzheimer’s Disease. IEEE Transactions on Biomedical Engineering, 55(9), 2171-2179. doi:10.1109/tbme.2008.923145

Hwa, R. C., & Ferree, T. C. (2002). Scaling properties of fluctuations in the human electroencephalogram. Physical Review E, 66(2). doi:10.1103/physreve.66.021901

Lee, J.-M., Kim, D.-J., Kim, I.-Y., Park, K.-S., & Kim, S. I. (2002). Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Computers in Biology and Medicine, 32(1), 37-47. doi:10.1016/s0010-4825(01)00031-2

Jospin, M., Caminal, P., Jensen, E. W., Litvan, H., Vallverdu, M., Struys, M. M. R. F., … Kaplan, D. T. (2007). Detrended Fluctuation Analysis of EEG as a Measure of Depth of Anesthesia. IEEE Transactions on Biomedical Engineering, 54(5), 840-846. doi:10.1109/tbme.2007.893453

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6). doi:10.1103/physreve.64.061907

Radhakrishnan, N., & Gangadhar, B. N. (1998). Estimating regularity in epileptic seizure time-series data. IEEE Engineering in Medicine and Biology Magazine, 17(3), 89-94. doi:10.1109/51.677174

Burnsed, J., Quigg, M., Zanelli, S., & Goodkin, H. P. (2011). Clinical Severity, Rather Than Body Temperature, During the Rewarming Phase of Therapeutic Hypothermia Affect Quantitative EEG in Neonates With Hypoxic Ischemic Encephalopathy. Journal of Clinical Neurophysiology, 28(1), 10-14. doi:10.1097/wnp.0b013e318205134b

Deffeyes, J. E., Harbourne, R. T., DeJong, S. L., Kyvelidou, A., Stuberg, W. A., & Stergiou, N. (2009). Use of information entropy measures of sitting postural sway to quantify developmental delay in infants. Journal of NeuroEngineering and Rehabilitation, 6(1), 34. doi:10.1186/1743-0003-6-34

Moorman, J. R., Delos, J. B., Flower, A. A., Cao, H., Kovatchev, B. P., Richman, J. S., & Lake, D. E. (2011). Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiological Measurement, 32(11), 1821-1832. doi:10.1088/0967-3334/32/11/s08

Zhang, D., Ding, H., Liu, Y., Zhou, C., Ding, H., & Ye, D. (2009). Neurodevelopment in newborns: a sample entropy analysis of electroencephalogram. Physiological Measurement, 30(5), 491-504. doi:10.1088/0967-3334/30/5/006

Veiga, J., Lopes, A. J., Jansen, J. M., & Melo, P. L. (2011). Airflow pattern complexity and airway obstruction in asthma. Journal of Applied Physiology, 111(2), 412-419. doi:10.1152/japplphysiol.00267.2011

Albuerne-Sanchez, L., Gonzalez-Camarena, R., Mejia-Avila, M., Carrillo-Rodriguez, G., Aljama-Corrales, T., & Charleston-Villalobos, S. (2013). Linear and Nonlinear Analysis of Base Lung Sound in Extrinsic Allergic Alveolitis Patients in Comparison to Healthy Subjects. Methods of Information in Medicine, 52(03), 266-276. doi:10.3414/me12-01-0037

Jing Hu, Jianbo Gao, & Principe, J. C. (2006). Analysis of Biomedical Signals by the Lempel-Ziv Complexity: the Effect of Finite Data Size. IEEE Transactions on Biomedical Engineering, 53(12), 2606-2609. doi:10.1109/tbme.2006.883825

Maestri, R., Pinna, G. D., Porta, A., Balocchi, R., Sassi, R., Signorini, M. G., … Raczak, G. (2007). Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiological Measurement, 28(9), 1067-1077. doi:10.1088/0967-3334/28/9/008

Hornero, R., Aboy, M., Abasolo, D., McNames, J., & Goldstein, B. (2005). Interpretation of Approximate Entropy: Analysis of Intracranial Pressure Approximate Entropy During Acute Intracranial Hypertension. IEEE Transactions on Biomedical Engineering, 52(10), 1671-1680. doi:10.1109/tbme.2005.855722

Escudero, J., Hornero, R., & Abásolo, D. (2009). Interpretation of the auto-mutual information rate of decrease in the context of biomedical signal analysis. Application to electroencephalogram recordings. Physiological Measurement, 30(2), 187-199. doi:10.1088/0967-3334/30/2/006

Aboy, M., Hornero, R., Abasolo, D., & Alvarez, D. (2006). Interpretation of the Lempel-Ziv Complexity Measure in the Context of Biomedical Signal Analysis. IEEE Transactions on Biomedical Engineering, 53(11), 2282-2288. doi:10.1109/tbme.2006.883696

Garcia-Gonzalez, M. A., Fernandez-Chimeno, M., & Ramos-Castro, J. (2009). Errors in the Estimation of Approximate Entropy and Other Recurrence-Plot-Derived Indices Due to the Finite Resolution of RR Time Series. IEEE Transactions on Biomedical Engineering, 56(2), 345-351. doi:10.1109/tbme.2008.2005951

Molina-Picó, A., Cuesta-Frau, D., Aboy, M., Crespo, C., Miró-Martínez, P., & Oltra-Crespo, S. (2011). Comparative study of approximate entropy and sample entropy robustness to spikes. Artificial Intelligence in Medicine, 53(2), 97-106. doi:10.1016/j.artmed.2011.06.007

Bao, Y., Li, H., Sun, X., Yu, Y., & Ou, J. (2012). Compressive sampling–based data loss recovery for wireless sensor networks used in civil structural health monitoring. Structural Health Monitoring: An International Journal, 12(1), 78-95. doi:10.1177/1475921712462936

Cuesta-Frau, D., Pérez-Cortés, J. C., & Andreu-Garcı́a, G. (2003). Clustering of electrocardiograph signals in computer-aided Holter analysis. Computer Methods and Programs in Biomedicine, 72(3), 179-196. doi:10.1016/s0169-2607(02)00145-1

Chon, K. H., Scully, C. G., & Lu, S. (2009). Approximate entropy for all signals. IEEE Engineering in Medicine and Biology Magazine, 28(6), 18-23. doi:10.1109/memb.2009.934629

Hu, X., Miller, C., Vespa, P., & Bergsneider, M. (2008). Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals. Medical Engineering & Physics, 30(5), 631-639. doi:10.1016/j.medengphy.2007.07.002

Richman, J. S. (2007). Sample Entropy Statistics and Testing for Order in Complex Physiological Signals. Communications in Statistics - Theory and Methods, 36(5), 1005-1019. doi:10.1080/03610920601036481

Weiting Chen, Zhizhong Wang, Hongbo Xie, & Wangxin Yu. (2007). Characterization of Surface EMG Signal Based on Fuzzy Entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(2), 266-272. doi:10.1109/tnsre.2007.897025

Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:10.1016/s0019-9958(65)90241-x

Xie, H.-B., Chen, W.-T., He, W.-X., & Liu, H. (2011). Complexity analysis of the biomedical signal using fuzzy entropy measurement. Applied Soft Computing, 11(2), 2871-2879. doi:10.1016/j.asoc.2010.11.020

Govindan, R. B., Wilson, J. D., Preißl, H., Eswaran, H., Campbell, J. Q., & Lowery, C. L. (2007). Detrended fluctuation analysis of short datasets: An application to fetal cardiac data. Physica D: Nonlinear Phenomena, 226(1), 23-31. doi:10.1016/j.physd.2006.10.019

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., … Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23). doi:10.1161/01.cir.101.23.e215

Effect of the Antiarrhythmic Agent Moricizine on Survival after Myocardial Infarction. (1992). New England Journal of Medicine, 327(4), 227-233. doi:10.1056/nejm199207233270403

(1989). Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression after Myocardial Infarction. New England Journal of Medicine, 321(6), 406-412. doi:10.1056/nejm198908103210629

The Caps Investigators. (1986). The cardiac arrhythmia pilot study. The American Journal of Cardiology, 57(1), 91-95. doi:10.1016/0002-9149(86)90958-6

Molina–Picó, A., Cuesta–Frau, D., Miró–Martínez, P., Oltra–Crespo, S., & Aboy, M. (2013). Influence of QRS complex detection errors on entropy algorithms. Application to heart rate variability discrimination. Computer Methods and Programs in Biomedicine, 110(1), 2-11. doi:10.1016/j.cmpb.2012.10.014

Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E., Wei, J. Y., & Goldberger, A. L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. Journal of Applied Physiology, 82(1), 262-269. doi:10.1152/jappl.1997.82.1.262

Hausdorff, J. M., Lertratanakul, A., Cudkowicz, M. E., Peterson, A. L., Kaliton, D., & Goldberger, A. L. (2000). Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. Journal of Applied Physiology, 88(6), 2045-2053. doi:10.1152/jappl.2000.88.6.2045

Cirugeda-Roldán, E. M., Cuesta-Frau, D., Miró-Martínez, P., Oltra-Crespo, S., Vigil-Medina, L., & Varela-Entrecanales, M. (2014). A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records. Computer Methods and Programs in Biomedicine, 114(3), 231-239. doi:10.1016/j.cmpb.2014.02.008

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record